当前位置: 首页 > news >正文

C++面向对象基础

目录

一.作用域限定符

1.名字空间

2.类内声明,类外定义

二.this指针

1 概念

2.功能

2.1 类内调用成员

2.2 区分重名的成员变量和局部变量

2.3链式调用

三.stastic关键字

1.静态局部变量

2 静态成员变量

3 静态成员函数

4 单例设计模式(了解)

四、const关键字(掌握)

1 const修饰成员函数

2.const修饰对象

3.const修饰成员变量

4 const修饰局部变量

5.constexpr 常量表达式


一.作用域限定符

1.名字空间

#include <iostream>
using namespace std;
int a = 2;
namespace my_space
{int a = 3;int b = 4;
}
using namespace my_space;
int main()
{int a = 1;cout << a << endl;  // 就近原则 打印1cout << ::a << endl; // ::匿名名字空间。2cout << my_space::a << endl;    // 3cout << b << endl;return 0;
}

2.类内声明,类外定义

#include <iostream>
using namespace std;
class Demo
{
public:// 类内声明Demo();void test(string str);
};
Demo::Demo()
{cout << "构造函数" << endl;
}
void Demo::test(string str)
{cout << "string =" << str << endl;
}
int main()
{Demo d;d.test("test");return 0;
}

二.this指针

1 概念

this指针是一个特殊的指针,指向当前类对象的首地址。

成员函数(包括构造函数与析构函数)中都有this指针,因此this指针只能在类内使用。实际上this指针指向的就是当前运行的成员函数所绑定的对象。

#include <iostream>
using namespace std;
class Test
{
public:void test_this(){cout << this << endl;}
};
int main()
{Test t1;cout << &t1 << endl;    // 0x61fe8ft1.test_this();         // 0x61fe8fTest t2;cout << &t2 << endl;    // 0x61fe8et2.test_this();         // 0x61fe8eTest *t3 = new Test;cout << t3 << endl;     // 0x7c27c8t3->test_this();        // 0x7c27c8delete t3;return 0;
}

2.功能

2.1 类内调用成员

● 成员(变量+函数)必须由对象调用。类中成员调用都依赖于this指针。通常由编译器自动添加。

#include <iostream>
using namespace std;
class Test
{
private:string name;
public:Test(string n){// 编译器默认添加this指针指向当前对象this->name = n;}string get_name(){return this->name;}
};
int main()
{Test t1("zhangsan");cout << t1.get_name() << endl;Test t2("lisi");cout << t2.get_name() << endl;return 0;
}

2.2 区分重名的成员变量和局部变量

#include <iostream>
using namespace std;class Test
{
private:string name;
public:Test(string name)//:name(name)    // 构造初始化列表区分{// 通过this指针在函数体中区分this->name = name;}string get_name(){return this->name;}
};int main()
{Test t1("zhangsan");cout << t1.get_name() << endl;Test t2("lisi");cout << t2.get_name() << endl;return 0;
}

2.3链式调用

支持链式调用的成员函数特点:

● 当一个成员函数的返回值是当前类型的引用时,往往表示这个函数支持链式调用。● return后面是*this

#include <iostream>
using namespace std;
class Test
{
private:int val = 0;
public:Test &add(int i){val += i;   // val = val + i;return *this;}int get_val(){return val;}
};
int main()
{Test t1;t1.add(1);t1.add(2);t1.add(100);cout << t1.get_val() << endl;Test t2;// 链式调用cout << t2.add(2).add(32).add(200).get_val() << endl; // 234// cout << t2.get_val() << endl;    // 2return 0;
}

三.stastic关键字

1.静态局部变量

使用static修饰局部变量,这样的变量就是静态局部变量。
静态局部变量在第一次调用时创建,直到程序结束后销毁,同一个类所有对象共用这一份静态局部变量。

#include <iostream>
using namespace std;
class Test
{
public:void func(){int a = 1;static int b = 1;   // 静态局部变量cout << "a=" << ++a << " " << &a << endl;cout << "b=" << ++b << " " << &b << endl;}
};
int main()
{Test t1;t1.func();  // 2 2t1.func();  // 2 3Test t2;t2.func();  // 2 4return 0;
}

2 静态成员变量

使用static修饰成员变量,这样的变量就是静态成员变量。

静态成员变量需要类内声明,类外初始化。

一个类的所有对象共用一份静态成员变量,虽然静态成员变量可以使用对象调用,但是更建议使用类名直接调用。静态成员变量可以脱离对象使用,在程序开始运行时就开辟内存空间直到程序结束后销毁。

更推荐使用类名进行调用。代码的可读性更好。

#include <iostream>
using namespace std;class Test
{
public:int a = 1;
//    static int b = 2; // 错误 ,静态成员变量需要内类声明,类外初始化static int b;
};int Test::b = 1;    // 类外初始化int main()
{cout << Test::b << " " << &Test::b << endl; // 1 0x403004Test t1;Test t2;cout << t1.a++ << " " << &t1.a << endl; // 1 0x61fe8ccout << t2.a++ << " " << &t2.a << endl; // 1 0x61fe88cout << "-----------------" << endl;cout << t1.b++ << " " << &t1.b << endl; // 1 0x403004cout << t2.b++ << " " << &t2.b << endl; // 2 0x403004cout << Test::b << " " << &Test::b << endl; // 3 0x403004return 0;
}

3 静态成员函数

使用static修饰成员函数,这样的函数就是静态成员函数。

与静态成员变量相似的有:

● 都可以通过类名直接调用,也可以通过对象调用(推荐使用类名直接调用)

● 都可以脱离对象使用。

静态成员函数没有this指针,不能在静态成员函数中调用同类中其他非静态成员,但是静态成员函数可以调用静态成员。

#include <iostream>
using namespace std;
class Test
{
public:void func0(){
//        func1();cout << "非静态成员函数" << endl;}// 静态成员函数static void func1(){
//        func0(); // 错误,静态成员函数没有this指针cout << "静态成员函数1" << endl;}static void func2(){
//        func1();cout << "静态成员函数2" << endl;}};
int main()
{
//    Test::func1();  // 通过类名直接调用Test t1;t1.func0();
//    t1.func1();t1.func2();return 0;
}
● 如果要在静态成员函数内调用非静态成员的属性,可以通过参数将对象传进来,因为静态成员函数内没有this指针。例如:
#include <iostream>
using namespace std;class Test
{
public:void func0(){
//        func1();cout << "非静态成员函数" << endl;}// 静态成员函数static void func1(Test &t){
//        t.func0();Test t3;t3.func0();
//        func0(); // 错误,静态成员函数没有this指针cout << "静态成员函数1" << endl;}static void func2(){
//        func1();cout << "静态成员函数2" << endl;}
};int main()
{
//    Test::func1();  // 通过类名直接调用Test t1;t1.func0();t1.func1(t1);t1.func2();return 0;
}

4 单例设计模式(了解)

设计模式是一套被反复使用,多人知晓的,经过分类的,代码设计经验的总结。通常用于面向对象的语言,如:Java、C++、C#。
 

#include <iostream>
using namespace std;// 单例设计模式
class Singleton
{
private:Singleton(){}Singleton(const Singleton&s){}static Singleton *instance; // 静态成员变量指针
public:// 静态成员函数static Singleton* get_instance(){if(instance == NULL){instance = new Singleton;}return instance;}static void delete_instance(){if(instance != NULL){delete instance;instance = NULL;}}};Singleton * Singleton::instance = NULL;int main()
{Singleton *s1 = Singleton::get_instance();Singleton *s2 = Singleton::get_instance();cout << s1 << endl;cout << s2 << endl;return 0;
}

四、const关键字(掌握)

1 const修饰成员函数

const修饰的成员函数,表示常成员函数。

特性如下:

● 可以调用成员变量,但是不能修改成员变量的值

● 不能调用非const修饰的成员函数,哪怕这个函数没有修改成员变量。

建议只要成员函数不修改成员变量就使用const修饰。比如:show、print等函数。

#include <iostream>
using namespace std;class Demo
{
private:int a;
public:Demo(int a){this->a = a;}void func0(){cout << get_demo() << endl;cout << "哈哈哈哈哈哈" << endl;}int get_demo()const{return a;}void test()const{
//        a++; // 错误 const修饰的成员函数,不能修改成员变量cout << a << endl;  // 可以调用
//        func0(); // 错误 const修饰的成员函数,不能调用非const修饰的成员函数cout << get_demo() << endl;}
};int main()
{Demo demo(1);cout << demo.get_demo() << endl;demo.func0();demo.test();return 0;
}

2.const修饰对象

const修饰的对象被称为常量对象,这种对象的成变量无法被修改,也无法调用非const修饰的成员函数。
#include <iostream>
using namespace std;class Demo
{
private:public:int a;Demo(int a){this->a = a;}void func0(){
//        cout << get_demo() << endl;cout << "哈哈哈哈哈哈" << endl;}int get_demo()const{return a;}void test()const{
//        a++; // 错误 const修饰的成员函数,不能修改成员变量cout << a << endl;  // 可以调用
//        func0(); // 错误 const修饰的成员函数,不能调用非const修饰的成员函数cout << get_demo() << endl;}};int main()
{
//    const Demo demo(1); // 常量对象Demo const demo(1); // 两种初始化的方式,等效于上一行//    demo.a = 2; // 错误const修饰的对象,无法修改成员变量cout << demo.a << endl; // 可以调用但是无法修改//    demo.func0(); // 错误const修饰的对象,无法调用非const修饰的成员函数cout << demo.get_demo() << endl;return 0;
}

3.const修饰成员变量

const修饰的成员变量为常成员变量,表示改成员变量的值无法被修改。

常成员变量存在两种初始化的方式:

● 直接赋值

声明之后赋值:

● 构造初始化列表

上述两种方式同时使用时,前者失效,以后者为准。

#include <iostream>
using namespace std;class Demo
{
private:const int a = 1;    // 直接赋值const int b = 2;const int c = 3;
public:// 构造初始化列表赋值Demo(int a,int b,int c):a(a),b(b),c(c){}void show(){cout << a << " " << b << " " << c << endl;}void test(){
//        a++;  // 错误,常成员变量无法被修改
//        b++;
//        c++;}};int main()
{Demo d(10,20,30);d.show();d.test();return 0;
}

4 const修饰局部变量

const修饰局部变量,表示该局部变量不可被修改。

这种方式常用于修饰引用参数。

#include <iostream>
using namespace std;class Demo
{
private:const int a = 1;    // 直接赋值const int b = 2;const int c = 3;
public:// 构造初始化列表赋值Demo(int a,int b,int c):a(a),b(b),c(c){}void show(){cout << a << " " << b << " " << c << endl;}void test(const int &f){
//        f++; // 错误cout << f << endl;const int e = 1;
//        e++; // 错误,const修饰的局部变量,无法被修改}};int main()
{Demo d(10,20,30);d.show();d.test(2);return 0;
}

5.constexpr 常量表达式

#include <iostream>using namespace std;class Test
{
public:constexpr static int a = 1; // a=1在编译期确定
//    constexpr int b = 2; 错误const int c = 3;
};
在上面例子a不需要配合任何对象使用对象程序运行期间创建因此a可以constexpr修饰表示编译确定反之b需要对象创建之后才能创建因此不能constexpr修饰

constexpr修饰的内容表示编译期间可以确定,C++部分代码需要编译期间确定

#include <iostream>
#include <array> // 后面要学习的一个头文件using namespace std;// 表示是否可以在编译期间计算出返回值
constexpr int calc_len(int i)
{return i+5; // 随便写的计算规则
}int main()
{// 5表示创建的arr对象的长度,必须在编译期间确定array<int,5> arr;// 编译期间可以计算出结果为6,正确array<int,calc_len(1)> arr2;int i = 1;// 编译期间无法计算出最后结果,报错
//    array<int,calc_len(i)> arr3; 错误return 0;
}

相关文章:

C++面向对象基础

目录 一.作用域限定符 1.名字空间 2.类内声明&#xff0c;类外定义 二.this指针 1 概念 2.功能 2.1 类内调用成员 2.2 区分重名的成员变量和局部变量 2.3链式调用 三.stastic关键字 1.静态局部变量 2 静态成员变量 3 静态成员函数 4 单例设计模式&#xff08;了解…...

遥感图像变换检测实践上手(TensorRT+UNet)

目录 简介 分析PyTorch示例 onnx模型转engine 编写TensorRT推理代码 main.cpp测试代码 小结 简介 这里通过TensorRTUNet&#xff0c;在Linux下实现对遥感图像的变化检测&#xff0c;示例如下&#xff1a; 可以先拉去代码&#xff1a;RemoteChangeDetection 分析PyTorch示…...

Transformers 引擎,vLLM 引擎,Llama.cpp 引擎,SGLang 引擎,MLX 引擎

1. Transformers 引擎 开发者&#xff1a;Hugging Face主要功能&#xff1a;Transformers 库提供了对多种预训练语言模型的支持&#xff0c;包括 BERT、GPT、T5 等。用户可以轻松加载模型进行微调或推理。特性&#xff1a; 多任务支持&#xff1a;支持文本生成、文本分类、问答…...

牛顿迭代法求解x 的平方根

牛顿迭代法是一种可以用来快速求解函数零点的方法。 为了叙述方便&#xff0c;我们用 C C C表示待求出平方根的那个整数。显然&#xff0c; C C C的平方根就是函数 f ( x ) x c − C f(x)x^c-C f(x)xc−C 的零点。 牛顿迭代法的本质是借助泰勒级数&#xff0c;从初始值开始快…...

端口隔离配置的实验

端口隔离配置是一种网络安全技术&#xff0c;用于在网络设备中实现不同端口之间的流量隔离和控制。以下是对端口隔离配置的详细解析&#xff1a; 基本概念&#xff1a;端口隔离技术允许用户将不同的端口加入到隔离组中&#xff0c;从而实现这些端口之间的二层数据隔离。这种技…...

洛谷 P10456 The Pilots Brothers‘ refrigerator

[Problem Discription] \color{blue}{\texttt{[Problem Discription]}} [Problem Discription] 给定一个 4 4 4 \times 4 44 的网格&#xff0c;每个网格有 0 , 1 0,1 0,1 两种状态。求最少可以通过多少次操作使得整个网格全部变成 1 1 1。 每次操作你需要选定一个格点 …...

windows+vscode+arm-gcc+openocd+daplink开发arm单片机程序

windowsvscodearm-gccopenocddaplink开发arm单片机程序&#xff0c;脱离keil。目前发现的最佳解决方案是&#xff0c;使用vscodeembedded ide插件。 Embedded IDE官方教程文档...

Mysql梳理10——使用SQL99实现7中JOIN操作

10 使用SQL99实现7中JOIN操作 10.1 使用SQL99实现7中JOIN操作 本案例的数据库文件分享&#xff1a; 通过百度网盘分享的文件&#xff1a;atguigudb.sql 链接&#xff1a;https://pan.baidu.com/s/1iEAJIl0ne3Y07kHd8diMag?pwd2233 提取码&#xff1a;2233 # 正中图 SEL…...

24.9.27学习笔记

Xavier初始化&#xff0c;也称为Glorot初始化&#xff0c;是一种在训练深度神经网络时用于初始化网络权重的策略。它的核心思想是在网络的每一层保持前向传播和反向传播时的激活值和梯度的方差尽可能一致&#xff0c;以避免梯度消失或梯度爆炸的问题。这种方法特别适用于激活函…...

C++第3课——保留小数点、比较运算符、逻辑运算符、布尔类型以及if-else分支语句(含视频讲解)

文章目录 1、课程笔记2、课程视频 1、课程笔记 #include<iostream>//头文件 input output #include<cmath> //sqrt()所需的头文件 #include<iomanip>//setprecision(1)保留小数点位数所需的头文件 using namespace std; int main(){/*复习上节课内容1、…...

韩媒专访CertiK首席商务官:持续关注韩国市场,致力于解决Web3安全及合规问题

作为Web3.0头部安全公司&#xff0c;CertiK在KBW期间联合CertiK Ventures举办的活动引起了业界的广泛关注。CertiK一直以来与韩国地方政府保持着紧密合作关系&#xff0c;在合规领域提供强有力的支持。而近期重磅升级的CertiK Ventures可以更好地支持韩国本地的区块链项目。上述…...

计算机毕业设计之:宠物服务APP的设计与实现(源码+文档+讲解)

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…...

小柴冲刺软考中级嵌入式系统设计师系列二、嵌入式系统硬件基础知识(3)嵌入式系统的存储体系

目录 感悟 一、存储系统的层次结构 存储器系统 二、内存管理单元 三、RAM和ROM的种类与选型 1、RAM RAM分类 2、ROM ROM分类 四、高速缓存Cache 五、其他存储设备 flechazohttps://www.zhihu.com/people/jiu_sheng 小柴冲刺软考中级嵌入式系统设计师系列总目录https…...

Unity android 接USBCamera

目录 一、前提 1. unity打包android后&#xff0c;链接USB摄像头&#xff0c;需要USB权限。 二、流程 1.Unity导出android工程&#xff0c;Player配置如图&#xff1a; 2.导出android工程 3.在android工程中找到AndroidManifest.xml加入usb权限相关 <?xml version&quo…...

演示:基于WPF的DrawingVisual开发的频谱图和律动图

一、目的&#xff1a;基于WPF的DrawingVisual开发的频谱图和律动图 二、效果演示 波形图 极坐标 律动图极坐标图 律动图柱状图 Dock布局组合效果 三、环境 VS2022,Net7,Win10&#xff0c;NVIDIA RTX A2000 四、主要功能 支持设置起始频率&#xff0c;终止频率&#xff0c;中心…...

【数据结构初阶】排序算法(中)快速排序专题

文章目录 1. 快排主框架2. 快排的不同实现2. 1 hoare版本2. 2 挖坑法2. 3 lomuto前后指针法2. 4 快排的非递归版本 3. 快排优化3. 1 快排性能的关键点分析:3. 1 三路划分3. 2 introsort自省排序 1. 快排主框架 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法。 其…...

Redis缓存双写一致性笔记(上)

Redis缓存双写一致性是指在将数据同时写入缓存&#xff08;如Redis&#xff09;和数据库&#xff08;如MySQL&#xff09;时&#xff0c;确保两者中的数据保持一致性。在分布式系统中&#xff0c;缓存通常用于提高数据读取的速度和减轻数据库的压力。然而&#xff0c;当数据更新…...

PCB基础

一、简介 PCB&#xff1a;printed circuit board&#xff0c;印刷电路板 主要作用&#xff1a;传输信号、物理支撑、提供电源、散热 二、分类 2.1 按基材分类 陶瓷基板&#xff1a;包括氧化铝、氮化铝、碳化硅基板等&#xff0c;具有优异的导热性&#xff0c;适用于高温和高…...

PostgreSQL 17:新特性与性能优化深度解析

目录 引言核心新特性 块级别增量备份与恢复逻辑复制槽同步参数SQL/JSON的JSON_TABLE命令PL/pgSQL支持数组%TYPE和%ROWTYPE 性能优化 IO合并读取性能参数真空处理过程的内存管理改进写前日志&#xff08;WAL&#xff09;锁的改进 升级建议结语 引言 PostgreSQL 17版本于2024年…...

[Linux#58][HTTP] 自己构建服务器 | 实现网页分离 | 设计思路

目录 一. 最简单的HTTP服务器 二.服务器 2.0 Protocol.hpp httpServer.hpp 子进程的创建和退出 子进程退出的意义 父进程关闭连接套接字 httpServer.cc argc (argument count) argv (argument vector) 三.服务器和网页分离 思考与补充&#xff1a; 一. 最简单的HTT…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...