当前位置: 首页 > news >正文

python装饰器用法

为什么用装饰器?

  • 第一个原因是,使用装饰器可以提升代码复用,避免重复冗余代码。如果我有多个函数需要测量执行时间,我可以直接将装饰器应用在这些函数上,而不是给多个函数加上一样的代码。这样的代码既元余也不方便后面维护
  • 第二个原因是,使用装饰器可以保证函数的逻辑清晰。如果一个本身功能就很复杂的函数,我还要通过修改内部代码来测量运行时间,这样会模糊函数自身的主逻辑。同时,软件开发的一个原则就是单一职责,也就是说,一个函数只应该承担一项责任
  • 第三,通过装饰器,我们可以扩展别人的函数。想象我们正在使用一个第三方库的函数,但我要添加额外的行为,比如测量运行时间,那我就可以用装饰器去包装,而不是跑到库里面去修改。
import time
import math#函数接收的参数为函数
def mysqrt(x):return math.sqrt(x)def print_running(f,x):print(f'{f.__name__} is running')return f(x)result= print_running(mysqrt,9)
print(result)

mysqrt is running
3.0

#基本的装饰器例子import time
def myDecorator(func):def warpper(*args,**kwargs):start_time=time.time()result=func(*args,**kwargs)end_time=time.time()print(f'{func.__name__} running time :{end_time-start_time}')return resultreturn warpperdec_mysqrt=myDecorator(mysqrt)
result=dec_mysqrt(9)
print(result)#使用@语法完成函数名字上面代码段的dec_mysqrt=myDecorator(mysqrt)替换
@myDecorator#函数接收的参数为函数
def mysqrt(x):return math.sqrt(x)x=mysqrt(10)
print(x)

mysqrt running time :0.0
3.0

#装饰器生成器:比如要要测量某函数运行时间是否超过阈值,但不同函数的阈值是不一样的,所以需要定义多个装饰器应对不同阈值吗?不,只需要用装饰器生成器
def timer(threshold):def decorator(func):def warpper(*args,**kwargs):start_time=time.time()result=func(*args,**kwargs)end_time=time.time()if (end_time-start_time>threshold):print(f'{func.__name__} running time is over {threshold} seconds')return resultreturn warpperreturn decorator@timer(0.2)
def sleep_04():time.sleep(0.4)# #上述写法的等价写法
# def sleep_04():
#     time.sleep(0.4)
# sleep_04 =timer(0.2)(sleep_04)sleep_04()
print(sleep_04.__name__)

sleep_04 running time is over 0.2 seconds
warpper

#但是上面的代码的sleep_04.__name__是warpper,不是sleep_04。
#能继承函数名字等参数的装饰器生成器import functools
def timer(threshold):def decorator(func):@functools.wraps(func)def wrapper(*args,**kwargs):start_time=time.time()result=func(*args,**kwargs)end_time=time.time()if (end_time-start_time>threshold):print(f'{func.__name__} running time is over {threshold} seconds')return resultreturn wrapperreturn decorator@timer(0.2)
def sleep_04():time.sleep(0.4)
# #上述写法的等价写法
# def sleep_04():
#     time.sleep(0.4)
# sleep_04 =timer(0.2)(sleep_04)sleep_04()
print(sleep_04.__name__)

sleep_04 running time is over 0.2 seconds
sleep_04

相关文章:

python装饰器用法

为什么用装饰器? 第一个原因是,使用装饰器可以提升代码复用,避免重复冗余代码。如果我有多个函数需要测量执行时间,我可以直接将装饰器应用在这些函数上,而不是给多个函数加上一样的代码。这样的代码既元余也不方便后…...

AI 写作太死板?原因竟然是这个!

有些同学跟我埋怨说AI生成的文章太死板,一堆的“首先、其次、然后、再次、接着、总而言之……”,说话太官方,内容还很水。 想要让它模仿谁的语气,或者谁的文章,一点儿都不像。 名人都不模仿不了,更别说模…...

ansible实用模块

简介 ansible是基于 paramiko 开发的,并且基于模块化工作,本身没有批量部署的能力。真正具有批量部署的是ansible所运行的模块,ansible只是提供一种框架。ansible不需要在远程主机上安装client/agents,因为它们是基于ssh来和远程主机通讯的。…...

【JavaScript】JIT

JIT实际上指,JS的编译过程、运行时。 Just in Time 在传统的编译语言里,比如JAVA、Go等,是提前编译的,它们的执行是先在本地编译出一个"东西",然后在放到服务器上运行。 提前编译的三大过程: …...

Matlab实现麻雀优化算法优化回声状态网络模型 (SSA-ESN)(附源码)

目录 1.内容介绍 2.部分代码 3.实验结果 4.内容获取 1内容介绍 麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新兴的群体智能优化算法,灵感来源于麻雀的觅食行为及其在面临危险时的预警机制。SSA通过模拟麻雀的这些自然行为来寻找问题…...

从 TCP Reno 经 BIC 到 CUBIC

重读 TCP拥塞控制算法-从BIC到CUBIC 以及 cubic 的 tcp friendliness 与拐点控制 这两篇文章,感觉还是啰嗦了,今日重新一气呵成这个话题。 reno 线性逼近管道容量 Wmax,相当于一次查询(capacity-seeking),但长肥管道从 0.5*Wmax …...

工厂模式与建造者模式的区别

在软件设计中,工厂模式和建造者模式是两种常见的设计模式,它们都是用于创建对象,但是各自有不同的应用场景和目的。本文将通过餐馆点餐的例子,深入探讨这两种模式的区别。 工厂模式 工厂模式的核心思想是通过一个抽象工厂类来创…...

电脑usb接口封禁如何实现?5种禁用USB接口的方法分享!(第一种你GET了吗?)

“防患于未然,安全始于细节。”在信息技术飞速发展的今天,企业的信息安全问题日益凸显。 USB接口作为数据传输的重要通道,在带来便利的同时,也成为了数据泄露和安全风险的高发地。 因此,对电脑USB接口进行封闭管理&a…...

有效的括号

有效的括号 思路&#xff1a;我们先创建一个栈&#xff0c;让左括号入栈&#xff0c;与右括号判断 Stack stacknew Stack<>(); 将字符串中的符号转化为字符 char ch s.charAt(i); 完整代码如下&#xff1a; class Solution {public boolean isValid(String s) {if (s …...

Vue3.0面试题汇总

Composition API 可以说是Vue3的最大特点&#xff0c;那么为什么要推出Composition Api&#xff0c;解决了什么问题&#xff1f; 通常使用Vue2开发的项目&#xff0c;普遍会存在以下问题&#xff1a; 代码的可读性随着组件变大而变差每一种代码复用的方式&#xff0c;都存在缺…...

TCP编程:从入门到实践

目录 一、引言 二、TCP协议原理 1.面向连接 2.可靠传输 三、TCP编程实践 1.TCP服务器 2.TCP客户端 四、总结 本文将带你了解TCP编程的基本原理&#xff0c;并通过实战案例&#xff0c;教你如何在网络编程中运用TCP协议。掌握TCP编程&#xff0c;为构建稳定、高效的网络通信…...

Python NumPy 数据分析:处理复杂数据的高效方法

Python NumPy 数据分析&#xff1a;处理复杂数据的高效方法 文章目录 Python NumPy 数据分析&#xff1a;处理复杂数据的高效方法一 数据来源二 获取指定日期数据三 获取指定行列数据四 求和计算五 比例计算六 平均值和标准差七 完整代码示例八 源码地址 本文详细介绍了如何使用…...

【Preference Learning】Reasoning with Language Model is Planning with World Model

arxiv: https://arxiv.org/abs/2305.14992 问题背景&#xff1a;当前LLM推理受到几个关键因素的限制&#xff1a; &#xff08;1&#xff09;LLM缺乏世界模型&#xff08;一种人类就有的对环境的心理表征&#xff0c;可以模拟行动以及活动对外部世界状态的影响&#xff09;去…...

OJ在线评测系统 后端基础部分开发 完善CRUD相关接口

完善相关接口 判斷编程语言是否合法 先从用户的请求拿到Language package com.dduo.dduoj.service.impl;import com.baomidou.mybatisplus.core.conditions.query.QueryWrapper; import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl; import com.dduo.dduoj…...

计算机网络--TCP、UDP抓包分析实验

计算机网络实验 目录 实验目的 实验环境 实验原理 1、UDP协议 2、TCP协议 实验具体步骤 实验目的 1、掌握使用wireshark工具对UDP协议进行抓包分析的方法&#xff0c;掌握UDP协议的报文格式&#xff0c;掌握UDP协议校验和的计算方法&#xff0c;理解UDP协议的优缺点&am…...

FreeRTOS的中断管理

前言 FreeRTOS的任务有优先级&#xff0c;MCU的硬件中断有中断优先级&#xff0c;这是两个不同的概念&#xff0c;FreeRTOS的任务管理要用到硬件中断&#xff0c;使用FreeRTOS时候也可以使用硬件中断&#xff0c;但是硬件中断ISR的设计要注意一些设计原则&#xff0c;在本节中我…...

JS加密=JS混淆?(JS加密、JS混淆,是一回事吗?)

JS加密、JS混淆&#xff0c;是一回事吗&#xff1f; 是的&#xff01;在国内&#xff0c;JS加密&#xff0c;其实就是指JS混淆。 1、当人们提起JS加密时&#xff0c;通常是指对JS代码进行混淆加密处理&#xff0c;而不是指JS加密算法&#xff08;如xor加密算法、md5加密算法、…...

hive-拉链表

目录 拉链表概述缓慢变化维拉链表定义 拉链表的实现常规拉链表历史数据每日新增数据历史数据与新增数据的合并 分区拉链表 拉链表概述 缓慢变化维 通常我们用一张维度表来维护维度信息&#xff0c;比如用户手机号码信息。然而随着时间的变化&#xff0c;某些用户信息会发生改…...

高并发内存池(六):补充内容

目录 有关大于256KB内存的申请和释放处理方法 处理大于256KB的内存申请 补充内容1 补充内容2 补充内容3 处理大于256KB的内存释放 新增内容1 新增内容2 测试函数 使用定长内存池替代new 释放对象时不传对象大小 补充内容1 补充内容2 补充内容3 补充内容4 测试…...

高性能存储 SIG 月度动态:优化 fuse 提升 AI 存储接入能力,erofs 工具发布新版本

本次月报综合了 SIG 在 7、8 两个月的工作进展&#xff0c;包含多项新特性、优化、Bugfix 等。 SIG 整体进展 fuse 支持 failover&#xff0c;并优化 background 读写公平性&#xff0c;提升 AI 存储接入场景的能力。 erofs page cache 共享特性已发到上游社区&#xff0c;re…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

02.运算符

目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&&#xff1a;逻辑与 ||&#xff1a;逻辑或 &#xff01;&#xff1a;逻辑非 短路求值 位运算符 按位与&&#xff1a; 按位或 | 按位取反~ …...