当前位置: 首页 > news >正文

从“纸面算力”到“好用算力”,超聚变打通AI+“最后一公里”

如果要评选2024年的年度科技名词,AI+当属最热门的候选项。

年初的《政府工作报告》中首次提出了“人工智能+”行动,正在从顶层设计着手,加快形成以人工智能为引擎的新质生产力。

折射到市场层面,AI+作为一种新的范式,不断深入千行万业。金融、医疗、制造、交通、智慧城市等各行各业都在掀起一场智能革命,通过AI和算力的结合挖掘新质生产力,不断释放出创新的乘法效应。

同时也遇到了一些待解的难题,比如作为基础设施的AI算力:当AI成为场景革新的驱动力量,算力环节如何破局?

刚刚结束的2024年中国算力大会“AI+,释放算力新价值”论坛上,来自超聚变、中国电信、滴普科技、百度、英特尔等算力产业上下游的厂商,以及人工智能领域的院士和专家,深入探讨了AI算力的现状和趋势。

也让我们看到了问题的答案。

01 打破算力瓶颈,行业需要“好用算力”
“AI+各行各业”不是简单的两者相加,而是要利用数据、算力、算法等智能要素,催生出新的业态和增长动能。

借用一个形象的比喻:AI+就好比是做饭,算法是锅、数据是米、算力是火。特别是在“算法跟着算力走”的背景下,算力已经可以在某种程度上和生产力划等号,算力强则AI强,算力不足,AI就会掉链子。

现实情况却是,AI算力的瓶颈在2024年依旧存在。

一是算力缺口的加剧。

参考美银等机构的报告:大模型进入到万亿参数时代后,对算力的需求达到了每年750倍的指数级膨胀,而目前的硬件算力供给只有3倍每两年的增速,供需缺口正在随着时间加剧。

也就意味着,让无数企业头大的“算力焦虑”,在时间的作用下将只增不减,同时也在拷问当前的算力供给方式:仅仅只是在数量上做文章,永远填不满各行各业的算力缺口,必须要思考怎么提升智能算力的效能。

二是算力亟需绿色化。

马斯克和黄仁勋都曾抱怨“算力的尽头是电力”,之后就传出了“微软算力中心搞崩了电网”的新闻。按照国际能源署的预测,2026年数据中心、人工智能等行业的电力消耗将达到1000太瓦时以上,增速是全球用电量的数十倍。

在这样的语境下,绿色智算所涉及的不单单是环保议题,能否在绿色智算的布局上未雨绸缪,给出可行的创新解决方案降低功耗,直接关系着下一个十年的算力供给能力,左右着AI+在各行各业的融合进程。

三是算力应用的困境。

没有汽车工业的繁荣,石油不过是廉价的燃料。同样的逻辑也适用于AI,倘若不能在应用层降低门槛、疏通堵点,使能各行各业的开发者高效打造AI原生应用,所谓的算力价值也就无从谈起。

目前AI应用还处于试点阶段,想要走向规模化落地,面临着算力、模型、应用等不同层级的痛点。比如算力的单一和兼容性问题,尤其是在模型推理的多元算力需求下;大模型调用的高门槛,模型和算力资源的匹配就劝退了不少开发者;以及应用开发时面临缺少工具链、开发效率低等挑战。

AI算力的瓶颈是否无解呢?答案是否定的。

2024年中国算力大会“AI+,释放算力新价值”论坛上,超聚变全球Marketing与销售服务部总裁、算力事业部总裁张小华道出了行业上下游的一个共识:推动算力从“纸面算力”到“可用算力”再到“好用算力”的转换。

简而言之,AI算力既要增量,也要提质。

正如超聚变算力领域与拓展部总裁唐启明在演讲中提到的:“面向AI算力,超聚变正在重构基础设施、跨越生态裂谷,逐步推向行业落地,通过纵向做深构筑竞争力,横向扩展以IT赋能OT,和伙伴一起共促AI算力产业繁荣。”

超聚变指出了方向,也给出了可行的路径。

02 告别能耗魔咒,构建“绿色”智能算力
首先要解决的就是绿色智算。

为了解决算力资源分布不均衡的情况,国家在2022年初启动了“东数西算”工程,将东部的算力需求有序引导到西部,发挥西部的自然气候和电力优势,通过算力资源的跨域调配,解决算力中心的能耗压力。

可随着大模型推理需求的爆发,对时延的要求越来越高,不少城市开始建立城市级、区域级的智算中心,以满足不断增长的推理算力需求。但在智算中心的建设上,并没有盲目上马,纷纷画出了能耗红线。

比如工信部等六部门在《工业能效提升行动计划》中提出:到2025年,新建大型、超大型数据中心电能利用效率(PUE)要优于1.3;北京、上海、深圳、杭州、广州等城市先后对新建数据中心提出了严格要求,其中深圳已明确鼓励PUE值低于1.25的数据中心。

正如外界所熟知的,PUE值越接近1,表明非IT设备的耗能越少,数据中心的能效水平越高。目前国内大型数据中心的平均PUE值为1.55,超大型数据中心平均PUE值也只有1.46,意味着能耗只有一半用在了“计算”上,其他的则浪费在了散热、照明等方面。

对于智算中心分布密集的一二线城市,能否在自然气候不占优势的前提下,降低智算中心的PUE值呢?

2024年中国算力大会上,超聚变的FusionPoD for AI 新一代全液冷整机柜GPU服务器斩获了“算力中国·年度重大突破成果”。在主办方公布的获奖理由里,除了在算力密度、海量数据访问上的出色表现,散热和供电能力的权重同样不可小觑:100%全液冷散热搭配105kW高效集中供电,让PUE低至1.06,5年TCO(总成本)降低15%以上,可以说是当下绿色智算的首选方案。

可以佐证的是,目前超聚变液冷服务器的出货量已经达到70000+节点,其中和浙江电信联合创新的端到端完整的数据中心液冷解决方案,采用了FusionPoD for AI整机柜液冷服务器规模部署,在有“中国四大火炉”之称的杭州,实现了极致能效和超低PUE。

一个不应被忽略的消息在于,超聚变在2024年中国算力大会上发起成立了“液冷AI开放联盟”,将致力于构建标准化的智算底座,让产业用户可以更快、更易、更好地获取和使用AI算力。

言外之意,基于液冷AI开放架构的“绿色算力”,在接下来一段时间里,每年都会成倍提升。

开源证券等第三方机构也在报告中预测了绿色智算的趋势:AIGC正驱动智算中心朝高密度、低PUE发展,2022年到2027年中国液冷数据中心市场将保持59%的复合增长率,2027年市场规模将突破千亿大关。

把以上信息做个归纳的话,智算中心告别能耗“魔咒”,已经是一种现在进行时,一种行业主旋律。

03 软硬件协同,打通AI+“最后一公里”
绿色智算加速了“可用算力”进程,距离“好用算力”还有多远呢?

作为算力基础设施与服务领域的“塔尖”选手,超聚变已经给出了自己的回答:

南向创新提升智算效能。

不只是前面提到的FusionPoD for AI全液冷整机柜GPU服务器,还包括开箱即用的超聚变超融合训推一体机等产品,同时推出了AI Space大模型加速引擎,借助模型迁移、适配和调优能力来提升智算效能。

北向使能AI融入现有业务。

直接的例子就是2024年中国算力大会上发布的超聚变FusionOne Al解决方案,围绕AI落地在算力、模型、应用等环节的痛点,提供了三大核心能力,进而缩短从算力到应用的距离,加速AI融入业务。

在算力层,超聚变打造了兼容多元AI算力、异构算力的XPU资源池,瞄准了行业普遍存在的痛点:在实际业务中常常需要CPU、GPU、FPGA、NPU等多种算力,被迫部署不同架构的服务器。

超聚变通过XPU资源池的方式,可以广泛兼容intel、AMD、NVIDIA、昇腾、摩尔线程等多种异构算力,并在智能调度的帮助下实现了50%有效算力提升,助力客户在推理算力上“一次投资,持续演进”。

在模型层,超聚变的模型工程涵盖了开源和第三方商用模型、场景化数据集,以及测试、联调、发布、部署、管理在内的模型使能工具和算子加速,进一步降低了大模型微调开发和推理上线的技术门槛。

以大模型与算力资源的匹配为例,在传统流程中,工程师需要根据模型的需求调整算力资源,在模型的计算需求与可用的硬件资源之间找到一个平衡点,对经验和能力的要求非常高,超聚变的解法是“模型与算力资源自动按需匹配”。

在应用层,超聚变提供了数据工程、知识库、插件在内的全周期AI工具链,并配备了专业的AI服务团队,前者旨在降低AI原生应用开发的门槛,后者对应的是100多位经验丰富的AI工程师。

个中逻辑并不难解释。相较于算力和模型,应用直接和客户的生产力挂钩,在AI+方兴未艾的氛围下,只有打通AI+的“最后一公里”,让算力的价值照进现实,让各行各业看到AI+的“倍增效应”,整个产业才会有序向上生长。

目前FusionOne Al解决方案已经服务超聚变的主流业务场景,覆盖了4000+员工、10000+合作伙伴,生成了百万行代码,实现80%以上的效率提升……超聚变软硬件协同释放算力新价值的解法,已经得到了验证。

每次提到AI+的时候,总有人想要寻找杀手级应用或者iPhone时刻,或许最正确的方式恰恰是像超聚变这样,解决AI+的一个个痛点和堵点,让智能算力润物细无声地“滋润”各行各业的每一个场景。

04 写在最后
诚如2024年中国算力大会所呈现的, 一个AI驱动的美丽新世界在算力时代变得越来越清晰。

通往“新世界”的道路上,有挑战,有机遇,还有一群默默“铺路”的技术人。有理由相信,超聚变和伙伴们的联合创新,将重塑算力新格局、释放算力新价值,点亮千行万业的数智化之路。

在AI+的浪潮下,城市将变得更加智慧、安全,企业将更加高效、充满活力,生活将更加便捷、充满想象。

相关文章:

从“纸面算力”到“好用算力”,超聚变打通AI+“最后一公里”

如果要评选2024年的年度科技名词,AI当属最热门的候选项。 年初的《政府工作报告》中首次提出了“人工智能”行动,正在从顶层设计着手,加快形成以人工智能为引擎的新质生产力。 折射到市场层面,AI作为一种新的范式,不…...

【有啥问啥】具身智能(Embodied AI):人工智能的新前沿

具身智能(Embodied AI):人工智能的新前沿 引言 在人工智能(AI)的进程中,具身智能(Embodied AI)正逐渐成为研究与应用的焦点。具身智能不仅关注于机器的计算能力,更强调…...

11-pg内核之锁管理器(六)死锁检测

概念 每个事务都在等待集合中的另一事务,由于这个集合是一个有限集合,因此一旦在这个等待的链条上产生了环,就会产生死锁。自旋锁和轻量锁属于系统锁,他们目前没有死锁检测机制,只能靠内核开发人员在开发过程中谨慎的…...

Git 与标签管理

在 Git 中,标签 tag 是指向某个 commit 的指针(所以创建和删除都很快)。Git 有 commit id 了,为什么还要有 tag?commit id 是一串无规律的数字,不好记;而 tag 是我们自定义的,例如我…...

【0334】Postgres内核之 auxiliary process(辅助进程)初始化 MyPgXact

1. MyPgXact(ProcGlobal->allPgXact)间接初始化 在上一篇文章【0333】Postgres内核之 auxiliary process(辅助进程)创建 PGPROC 中, 讲解了Postgres内核完成 AuxiliaryProcess 初始化 pid、lxid、procLatch、myProcLocks、lockGroupMembers等所有成员的过程。 这些成员…...

20.1 分析pull模型在k8s中的应用,对比push模型

本节重点介绍 : push模型和pull模型监控系统对比为什么在k8s中只能用pull模型的k8s中主要组件的暴露地址说明 push模型和pull模型监控系统 对比下两种系统采用的不同采集模型,即push型采集和pull型采集。不同的模型在性能的考虑上是截然不同的。下面表格简单的说…...

Ubuntu 镜像替换为阿里云镜像:简化你的下载体验

Ubuntu,作为一款广受欢迎的Linux发行版,以其稳定性和易用性著称。但你是否曾因为下载速度慢而感到沮丧?现在,你可以通过将Ubuntu的默认下载源替换为阿里云镜像来解决这个问题。本文将指导你如何完成这一过程。 为什么选择阿里云镜…...

The Sandbox 游戏制作教程第 6 章|如何使用装备制作出色的游戏 —— 避免环境危险

欢迎回到我们的系列,我们将记录 The Sandbox Game Maker 的 “On-Equip”(装备)功能的多种用途。 如果你刚加入 The Sandbox,装备功能是 “可收集组件”(Collectable Component)中的一个多功能工具&#xf…...

JavaScript中的输出方式

1. console.log() console.log() 是开发者在调试代码时最常用的方法。它将信息打印到浏览器的控制台,使开发者能够查看变量的值、程序的执行状态以及其他有用的信息。 用途:用于调试和记录程序运行时的信息。优点:简单易用,适合…...

力扣9.25

2306. 公司命名 给你一个字符串数组 ideas 表示在公司命名过程中使用的名字列表。公司命名流程如下: 从 ideas 中选择 2 个 不同 名字,称为 ideaA 和 ideaB 。 交换 ideaA 和 ideaB 的首字母。 如果得到的两个新名字 都 不在ideas 中,那么 …...

从零开始之AI面试小程序

从零开始之AI面试小程序 文章目录 从零开始之AI面试小程序前言一、工具列表二、开发部署流程1. VMWare安装2. Centos安装3. Centos环境配置3.1. 更改子网IP3.2. 配置静态IP地址 4. Docker和Docker Compose安装5. Docker镜像加速源配置6. 部署中间件6.1. MySQL部署6.2. Redis部署…...

Html2OpenXml:HTML转化为OpenXml的.Net库,轻松实现Html转为Word。

推荐一个开源库,轻松实现HTML转化为OpenXml。 01 项目简介 Html2OpenXml 是一个开源.Net库,旨在将简单或复杂的HTML内容转换为OpenXml组件。 该项目始于2009年,最初是为了将用户评论转换为Word文档而设计的 随着时间的推移,Ht…...

HumanNeRF:Free-viewpoint Rendering of Moving People from Monocular Video 精读

1. 姿态估计和骨架变换模块 人体姿态估计:HumanNeRF 通过已知的单目视频对视频中人物的姿态进行估计。常见的方法是通过人体姿态估计器(如 OpenPose 或 SMPL 模型)提取人物的骨架信息,获取 3D 关节的位置信息。这些关节信息可以帮…...

Springboot中基于注解实现公共字段自动填充

1.使用场景 当我们有大量的表需要管理公共字段,并且希望提高开发效率和确保数据一致性时,使用这种自动填充方式是很有必要的。它可以达到一下作用 统一管理数据库表中的公共字段:如创建时间、修改时间、创建人ID、修改人ID等,这些…...

Android 已经过时的方法用什么新方法替代?

过时修正举例 (Kotlin): getColor(): resources.getColor(R.color.white) //已过时// 修正后:ContextCompat.getColor(this, R.color.white) getDrawable(): resources.getDrawable(R.mipmap.test) //已过时//修正后:ContextCompat.getDrawable(this, R.mipmap.test) //…...

【RocketMQ】MQ与RocketMQ介绍

🎯 导读:本文介绍了消息队列(MQ)的基本概念及其在分布式系统中的作用,包括实现异步通信、削峰限流和应用解耦等方面的优势,并对ActiveMQ、RabbitMQ、RocketMQ及Kafka四种MQ产品进行了对比分析,涵…...

【笔记】自动驾驶预测与决策规划_Part4_时空联合规划

文章目录 0. 前言1. 时空联合规划的基本概念1.1 时空分离方法1.2 时空联合方法 2.基于搜索的时空联合规划 (Hybrid A* )2.1 基于Hybrid A* 的时空联合规划建模2.2 构建三维时空联合地图2.3 基于Hybrid A*的时空节点扩展2.4 Hybrid A* :时空节…...

Linux指令收集

文件和目录操作 ls: 列出目录内容。 -l 显示详细信息。-a 显示隐藏文件(以.开头的文件)。cd: 改变当前工作目录。 cd ~ 返回主目录。cd .. 上移一级目录。pwd: 显示当前工作目录。mkdir: 创建目录。 mkdir -p path/to/directory 创建多级目录。rmdir: 删…...

《C++并发编程实战》笔记(五)

五、内存模型和原子操作 5.1 C中的标准原子类型 原子操作是不可分割的操作&#xff0c;它或者完全做好&#xff0c;或者完全没做。 标准原子类型的定义在头文件<atomic>中&#xff0c;类模板std::atomic<T>接受各种类型的模板实参&#xff0c;从而创建该类型对应…...

在Python中实现多目标优化问题(5)

在Python中实现多目标优化问题 在Python中实现多目标优化&#xff0c;除了传统的进化算法&#xff08;如NSGA-II、MOEA/D&#xff09;和机器学习辅助的方法之外&#xff0c;还有一些新的方法和技术。以下是一些较新的或较少被提及的方法&#xff1a; 1. 基于梯度的多目标优化…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器

一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下&#xff0c;音视频内容犹如璀璨繁星&#xff0c;点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频&#xff0c;到在线课堂中知识渊博的专家授课&#xff0c;再到影视平台上扣人心弦的高清大片&#xff0c;音…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...