2/11考试总结
时间安排
7:30–7:50 读题,T1貌似是个 dp ,T2 数据结构,T3 可能是数据结构。
7:50–9:45 T1,点规模非常大,可以达到 1e18 级别,感觉应该没法直接做,考虑每条新增的边的贡献,想到用 vector 暴力维护一条边两边的集合大小。写完发现是个假的。仔细想了一下发现直接做就是对的,有用点比较少,可以直接用 map 暴力存,然后暴力做。
9:45–10:51 T2,对于 n 比较小的时候可以单调栈暴力做,容易发现每一个新增的 r 的贡献只和单调栈中的一段有关,且每一段对应一个函数关系,可以用李超树无脑维护拿到 50 分。思考正解能否扫描线做,发现并不好维护。
10:50–12:00 T3,考虑写暴力,然后发现数据范围卡的太死了,不精细的暴力压根跑不动,于是一直在卡常。
回顾反思
T1:
一开始写的假做法耽误了一点时间。
对于这种规模极大的题要么是有某种神仙性质使得可以直接计算或者极大的缩小规模,要么就是只用考虑有用的点而这些点非常少。
T2:
比赛的时候更多的时间是在写部分分,部分分可以类似扫描线做,于是就去往扫描线直接处理区间答案想了,而正解则是考虑每个单独元素对区间的贡献。
不管是扫描线还是什么直接维护每个询问对应区间的答案不好做。发现题目的取 max 有可加性,于是可以考虑原序列每个元素对询问的贡献。可以单调栈处理出一个值为最值的区间 a,b ,那么最值就成了常量,可以讨论 [a,b] 与询问区间 [l,r] 的包含相交关系分四类讨论,可以使用二维数点、李超树等简单数据结构分四种做法计算。
T3:
比赛的时候几乎没给这道题时间,更多的时间是在卡暴力的常数。有类似的 dfs 的想法,但是觉得复杂度不可能对就没再想了。对于 dfs 的实现上,我的大致想法是比较暴力的,直接考虑枚举每一位,而正解则观察到 dfs 的过程是个 dag ,每次同时处理一层出边上的点,起到一个剪枝的效果。
正解实际上是个爆搜。考虑拓展时形成了一个dag结构,于是用vector存储当前的一些出边 dfs 跑 dag 。通过剪枝和主席树对于信息获取加速,复杂度就对了。
T1是送分题,T2也是没有任何代码难度的经典题,T3是 dfs,可能实现和剪枝上有一些细节和技巧,但是写了dfs 起码也是能够拿到 50 左右的。前两题都是应该 AC 的。尤其是这种 T1 应该尽可能减少花在上面的时间。
相关文章:
2/11考试总结
时间安排 7:30–7:50 读题,T1貌似是个 dp ,T2 数据结构,T3 可能是数据结构。 7:50–9:45 T1,点规模非常大,可以达到 1e18 级别,感觉应该没法直接做,考虑每条新增的边的贡献,想到用 …...
Java Set集合
7 Set集合 7.1 Set集合的概述和特点 Set集合的特点 不包含重复元素的集合没有带索引的方法,所以不能使用普通for循环 Set集合是接口通过实现类实例化(多态的形式) HashSet:添加的元素是无序,不重复,无索引…...
【手写 Vuex 源码】第七篇 - Vuex 的模块安装
一,前言 上一篇,主要介绍了 Vuex 模块收集的实现,主要涉及以下几个点: Vuex 模块的概念;Vuex 模块和命名空间的使用;Vuex 模块收集的实现-构建“模块树”; 本篇,继续介绍 Vuex 模…...
EOC第六章《块与中枢派发》
文章目录第37条:理解block这一概念第38条:为常用的块类型创建typedef第39条:用handler块降低代码分散程度第41条:多用派发队列,少用同步锁方案一:使用串行同步队列来将读写操作都安排到同一个队列里&#x…...
八、Git远程仓库操作——跨团队成员的协作
前言 前面一篇博文介绍了git团队成员之间的协作,现在在介绍下如果是跨团队成员的话,如何协作? 跨团队成员协作,其实就是你不属于那个项目的成员,你没有权限向那个仓库提交代码。但是github还有另一种 pull request&a…...
算法刷题打卡第88天:字母板上的路径
字母板上的路径 难度:中等 我们从一块字母板上的位置 (0, 0) 出发,该坐标对应的字符为 board[0][0]。 在本题里,字母板为board ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "…...
UVa The Morning after Halloween 万圣节后的早晨 双向BFS
题目链接:The Morning after Halloween 题目描述: 给定一个二维矩阵,图中有障碍物和字母,你需要把小写字母移动到对应的大写字母位置,不同的小写字母可以同时移动(上下左右四个方向或者保持不动 ࿰…...
Connext DDS属性配置参考大全(3)
Transport传输dds.participant.logging.time_based_logging.process_received_messagedds.participant.logging.time_based_logging.process_received_message.timeout...
Docker-安装Jenkins-使用jenkins发版Java项目
文章目录0.前言环境背景1.操作流程1.1前期准备工作1.1.1环境变量的配置1.2使用流水线的方式进行发版1.2.1新建流水线任务1.2.2流水线操作工具tools步骤stages步骤1:拉取代码编译步骤2:发送文件并启动0.前言 学海无涯,旅“途”漫漫,“途”中小记ÿ…...
spring 中的 Bean 是否线程安全
文章目录结论1、spring中的Bean从哪里来?2、spring中什么样的Bean存在线程安全问题?3、如何处理spring Bean的线程安全问题?结论 其实,Spring 中的 Bean 是否线程安全,其实跟 Spring 容器本身无关。Spring框架中没有提…...
微电网两阶段鲁棒优化经济调度方法[3]【升级优化版本】(Matlab代码实现)
💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑…...
C++入门教程||C++ 数据类型||C++ 变量类型
C 数据类型 使用编程语言进行编程时,需要用到各种变量来存储各种信息。变量保留的是它所存储的值的内存位置。这意味着,当您创建一个变量时,就会在内存中保留一些空间。 您可能需要存储各种数据类型(比如字符型、宽字符型、整型…...
【visio使用技巧】图片导出pdf时去掉多余空白
问题 在visio导出pdf格式的图片时,往往会存在多余的白边,如下图所示: 解决方法 依次点击:菜单栏→文件→选项→自定义功能区→勾选“开发工具”→确定。 依次点击菜单栏→开发工具→显示ShapeSheet→页→Print Properties→将…...
Rust语言之Option枚举类型
概述 Option是Rust语言设计中最重要的枚举类型之一,它编码了其它语言中空值与非空值的概念,差异在于,Rust不会允许你像其它语言一样以非空值的方式来使用一个空值,这避免了很多错误。Option在标准库中的定义如下: pu…...
基于TimeQuest时序优化原理和方法
💡 回顾基于RTL逻辑时序优化的基本思路,在关键路径中插入寄存器来优化时序 分析最坏路径 通过前面对TimeQuest软件的理解,基本上可以找到关键路径,此文章主要对关键路径时序进行优化,使设计达到时序要求,以…...
LeetCode第332场周赛
2023.2.12LeetCode第332场周赛 6354. 找出数组的串联值 思路 双指针模拟,两个指针相遇的时候要特判 算法 class Solution { public:long long findTheArrayConcVal(vector<int>& nums) {long long ans 0;int i 0, j nums.size() - 1;while (i <…...
2023-2-12刷题情况
字母板上的路径 题目描述 我们从一块字母板上的位置 (0, 0) 出发,该坐标对应的字符为 board[0][0]。 在本题里,字母板为board [“abcde”, “fghij”, “klmno”, “pqrst”, “uvwxy”, “z”],如下所示。 我们可以按下面的指令规则行动…...
拉普拉斯矩阵
拉普拉斯算子 Δff(xi1,yj)f(xi−1,yj)f(xi,yj1)f(xi,yj−1)−4f(xi,yj)∑(k,l)∈N(i,j)(f(xk,yl)−f(xi,yj))\begin{aligned} \Delta f & f\left(x_{i1}, y_j\right) f\left(x_{i-1},y_j\right) f\left(x_i,y_{j1}\right)f\left(x_i,y_{j-1}\right) - 4f\left(x_i,y_j\r…...
Top-1错误率、Top-5错误率等常见的模型算法评估指标解析
Top-1 错误率:指预测输出的概率最高的类别与人工标注的类别相符的准确率,就是你预测的label取最后概率向量里面最大的那一个作为预测结果,如过你的预测结果中概率最大的那个分类正确,则预测正确,否则预测错误。比如预测…...
Urho3D 容器类型
Urho3D实现了自己的字符串类型和模板容器,而不是使用STL。其基本原理如下: 在某些情况下提高了性能,例如使用PODVector类时。保证字符串和容器的二进制大小,以允许例如嵌入Variant对象内。减少了编译时间。直接命名和实现&#x…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
