当前位置: 首页 > news >正文

高级java每日一道面试题-2024年9月30日-算法篇-LRU是什么?如何实现?

如果有遗漏,评论区告诉我进行补充

面试官: LRU是什么?如何实现?

我回答:

LRU(Least Recently Used)是一种常用的缓存淘汰策略,用于在缓存满时决定哪些数据应该被移除。LRU算法的基本思想是:当缓存达到其容量上限时,最近最少使用的数据会被优先淘汰。这种策略假设最近使用的数据在未来也会被频繁访问。

LRU算法概述

LRU算法是一种缓存淘汰策略,其核心思想是:如果一个数据在最近一段时间没有被访问到,那么在未来被访问的可能性也很小。因此,当缓存空间已满时,LRU算法会选择最近最少使用的数据进行淘汰。

LRU算法广泛应用于操作系统中的页面置换、数据库查询优化、Web缓存等场景,是最大化缓存命中率的有效手段之一。

LRU算法的实现原理

LRU的实现

LRU的实现通常需要一个数据结构来同时支持快速查找和插入/删除操作。常用的数据结构是哈希表(HashMap)和双向链表(Doubly Linked List)的结合体。

数据结构
  • 哈希表:用于快速查找缓存中的元素。
  • 双向链表:用于维护元素的访问顺序,最近访问的元素放在链表头部,最久未访问的元素放在链表尾部。
基本操作
  1. 插入

    • 如果新插入的键已经在缓存中,则更新其值,并将其移动到链表头部。
    • 如果新插入的键不在缓存中,且缓存已满,则移除链表尾部的元素,并将新元素插入到链表头部。
  2. 访问

    • 如果访问的键在缓存中,则将其移动到链表头部。
    • 如果访问的键不在缓存中,则返回null或其他默认值。
  3. 删除

    • 如果删除的键在缓存中,则从链表和哈希表中移除该元素。
    • 如果删除的键不在缓存中,则不进行任何操作。

LRU算法的实现需要满足以下几个要求:

  1. 查找快:能够迅速找到缓存中的数据。
  2. 插入快:能够快速地将新数据插入到缓存中。
  3. 删除快:能够高效地删除缓存中的数据。
  4. 维护顺序:需要维护数据的访问顺序,以便在缓存空间不足时淘汰最近最少使用的数据。

代码实现

下面是一个使用Java实现LRU缓存的示例:

import java.util.HashMap;
import java.util.Map;public class LRUCache<K, V> {private final int capacity;private final Map<K, Node<K, V>> map;private final DoublyLinkedList<K, V> list;public LRUCache(int capacity) {this.capacity = capacity;this.map = new HashMap<>();this.list = new DoublyLinkedList<>();}public V get(K key) {if (map.containsKey(key)) {Node<K, V> node = map.get(key);list.moveToHead(node); // 将访问的节点移到链表头部return node.value;}return null;}public void put(K key, V value) {if (map.containsKey(key)) {Node<K, V> node = map.get(key);node.value = value; // 更新节点的值list.moveToHead(node); // 将更新的节点移到链表头部} else {if (map.size() >= capacity) {Node<K, V> removedNode = list.removeTail(); // 移除链表尾部的节点map.remove(removedNode.key); // 从哈希表中移除对应的键}Node<K, V> newNode = new Node<>(key, value);list.addHead(newNode); // 将新节点添加到链表头部map.put(key, newNode); // 在哈希表中添加新的键值对}}private static class Node<K, V> {K key;V value;Node<K, V> prev;Node<K, V> next;Node(K key, V value) {this.key = key;this.value = value;}}private static class DoublyLinkedList<K, V> {private Node<K, V> head;private Node<K, V> tail;public void addHead(Node<K, V> node) {if (head == null) {head = tail = node;} else {node.next = head;head.prev = node;head = node;}}public void moveToHead(Node<K, V> node) {if (node == head) return; // 如果节点已经是头结点,则无需移动removeNode(node);addHead(node);}public Node<K, V> removeTail() {if (tail == null) return null;Node<K, V> node = tail;removeNode(tail);return node;}private void removeNode(Node<K, V> node) {if (node.prev != null) {node.prev.next = node.next;} else {head = node.next;}if (node.next != null) {node.next.prev = node.prev;} else {tail = node.prev;}node.prev = null;node.next = null;}}public static void main(String[] args) {LRUCache<Integer, String> cache = new LRUCache<>(2);cache.put(1, "one");cache.put(2, "two");System.out.println(cache.get(1)); // 输出: onecache.put(3, "three"); // 移除最近最少使用的 2System.out.println(cache.get(2)); // 输出: nullcache.put(4, "four"); // 移除最近最少使用的 1System.out.println(cache.get(1)); // 输出: nullSystem.out.println(cache.get(3)); // 输出: threeSystem.out.println(cache.get(4)); // 输出: four}
}

解释

  1. LRUCache 类

    • capacity:缓存的最大容量。
    • map:哈希表,用于存储键和对应的节点。
    • list:双向链表,用于维护节点的访问顺序。
  2. get 方法

    • 如果键存在于缓存中,将对应的节点移动到链表头部,并返回其值。
    • 如果键不存在于缓存中,返回null。
  3. put 方法

    • 如果键已经存在于缓存中,更新其值并将节点移动到链表头部。
    • 如果键不存在于缓存中且缓存已满,移除链表尾部的节点,并将新节点添加到链表头部。
    • 如果键不存在于缓存中且缓存未满,直接将新节点添加到链表头部。
  4. Node 类

    • 表示双向链表中的一个节点,包含键、值以及前驱和后继指针。
  5. DoublyLinkedList 类

    • 实现了双向链表的基本操作,包括添加节点到头部、移动节点到头部、移除节点等。

LRU算法的性能分析

LRU算法的性能主要取决于哈希表和双向链表的操作效率。由于哈希表的查找、插入和删除操作的时间复杂度都是O(1),双向链表的插入、删除和移动操作的时间复杂度也都是O(1)(在已知节点位置的情况下),因此LRU算法的整体时间复杂度可以认为是O(1)。

然而,需要注意的是,在实际应用中,由于哈希表的冲突和链表节点的移动等操作,LRU算法的实际性能可能会受到一定影响。此外,当缓存数据量很大时,哈希表和链表的内存开销也需要考虑。

LRU算法的改进和优化

针对LRU算法的不足,有一些改进和优化方法:

  1. LRU-K算法:将“最近使用过1次”的判断标准扩展为“最近使用过K次”,以减少缓存污染问题。LRU-K算法需要多维护一个队列来记录所有缓存数据被访问的历史。
  2. Two Queues(2Q)算法:使用两个缓存队列,一个是FIFO队列,一个是LRU队列。新数据先放入FIFO队列,当数据再次被访问时,将其移到LRU队列。这种算法结合了FIFO和LRU的优点。
  3. MQ算法:根据访问频率将数据划分为多个队列,不同的队列具有不同的访问优先级。新数据放入最低优先级的队列,当数据的访问次数达到一定次数时,将其提升到更高优先级的队列。

总结

综上所述,LRU算法是一种高效且广泛应用的缓存淘汰策略。在Java中,可以通过使用哈希表和双向链表的组合来实现LRU缓存。同时,也需要根据实际应用场景和需求对LRU算法进行改进和优化。

相关文章:

高级java每日一道面试题-2024年9月30日-算法篇-LRU是什么?如何实现?

如果有遗漏,评论区告诉我进行补充 面试官: LRU是什么?如何实现? 我回答: LRU&#xff08;Least Recently Used&#xff09;是一种常用的缓存淘汰策略&#xff0c;用于在缓存满时决定哪些数据应该被移除。LRU算法的基本思想是&#xff1a;当缓存达到其容量上限时&#xff0…...

CSS选择器的全面解析与实战应用

CSS选择器的全面解析与实战应用 一、基本选择器1.1 通配符选择器&#xff08;*&#xff09;2.标签选择器&#xff08;div&#xff09;1.3 类名选择器&#xff08;.class&#xff09;4. id选择器&#xff08;#id&#xff09; 二、 属性选择器&#xff08;attr&#xff09;三、伪…...

vue3自动暴露element-plus组件的ref

自动暴露子组件的方法&#xff0c;注意在TS下&#xff0c;需要自己声明类型&#xff0c;我这里全用any代替了 <template><el-button click"getFocus">获得焦点</el-button><com ref"comRef" /> </template><script setup…...

龙芯+FreeRTOS+LVGL实战笔记(新)——10蜂鸣器嘀嘀嘀

本专栏是笔者另一个专栏《龙芯+RT-Thread+LVGL实战笔记》的姊妹篇,主要的区别在于实时操作系统的不同,章节的安排和任务的推进保持一致,并对源码做了完善与优化,各位可以先到本人主页下去浏览另一专栏的博客列表(目前已撰写36篇,图1所示),再决定是否订阅。此外,也可以…...

微信小程序-数据模型与动态赋值

首先新建一个小程序项目. 这边有创建基础项目的流程:从0新建一个微信小程序实现一个简单跳转_小白开发小程序源代码-CSDN博客 一共两步: 1.建立页面的 数据模型 和 默认赋值: 默认赋值: 2.接收输入框的新文案,动态替换上面的文案展示 //文件 testUI.js增加方法:onInputChan…...

【Redis】Linux下安装配置及通过C++访问Redis

文章目录 一、Linux Centos 7.0版本下的安装及配置二、通过C访问Redis 一、Linux Centos 7.0版本下的安装及配置 通过源来安装&#xff0c;此次安装的版本为 redis 5.0 的&#xff0c;要通过其他源进行安装&#xff0c;首先安装 scl 源 yum install centos-release-scl-rh再安…...

Python 入门教程(4)数据类型 | 4.7、元组

文章目录 一、元组1、定义2、创建3、访问元组元素4、遍历元组5、 前言&#xff1a; 在Python编程中&#xff0c;元组&#xff08;tuple&#xff09;是一种内置的数据结构&#xff0c;它提供了一种存储多个项目&#xff08;元素&#xff09;的方式&#xff0c;这些项目可以是不同…...

Temu正在吸引越来越多的亚马逊卖家,这个市场Temu蝉联下载榜首

近年来&#xff0c;全球电商市场竞争愈发激烈&#xff0c;各大平台纷纷使出浑身解数&#xff0c;以期在激烈的市场竞争中脱颖而出。 一个来自中国的新兴电商平台——Temu&#xff0c;凭借其独特的市场策略和迅猛的发展势头&#xff0c;正在吸引越来越多的亚马逊卖家。Temu为美国…...

设计原则模式概览

前言 架构设计是软件系统稳定的核心因素&#xff0c;也是程序员晋级架构师的核心因素&#xff0c;建议日常开发过程中针对设计进行深挖与思考 核心 分清楚哪些是稳定的&#xff0c;哪些是变化的&#xff08;一定有稳定跟变化的成分&#xff09;&#xff1b; 捋清楚哪些是类设计…...

高级主题:接口性能测试与压力测试

在现代软件开发中&#xff0c;确保接口的性能和稳定性是非常重要的。随着用户数量的增加&#xff0c;接口需要能够承受高并发请求&#xff0c;从而保证良好的用户体验。本篇文章将介绍如何使用 Python 工具 Locust 进行接口性能测试和压力测试&#xff0c;分析测试结果&#xf…...

python绘制图像

柱状图 import os# 输入想要存储图像的路径 os.chdir(D:)import matplotlib.pyplot as plt import numpy as np # 改变绘图风格 import seaborn as snssns.set(color_codesTrue)cell [gen7, xgspon, 3081GB, vettel, totalplay, other] pvalue [21, 20, 18, 13, 7, 34]width…...

如何修复变砖的手机并恢复丢失的数据

您可能之前听说过“变砖”&#xff0c;但您知道什么是变砖手机吗&#xff1f;正如许多论坛中经常提出的问题一样&#xff0c;我如何知道我的手机是否变砖了&#xff1f;好吧&#xff0c;手机变砖主要有两种类型&#xff0c;即软件变砖和硬变砖。软变砖手机意味着重启后您仍然可…...

服务器使用了代理ip,遇到流量攻击,会对服务器有影响吗

当服务器使用代理IP并遭遇流量攻击&#xff08;如DDoS攻击&#xff09;时&#xff0c;仍然会对服务器产生影响。以下是关于这种情况的一些详细分析&#xff1a; 1. 流量攻击的性质 流量攻击的目的是通过发送大量请求来耗尽目标服务器的资源或带宽&#xff0c;导致服务中断或不…...

从存储到人工智能洞察: 利用 MinIO 和 Polars 简化数据管道

将 MinIO 的高性能、可扩展企业对象存储的强大功能与 Polars&#xff08;闪电般快速的 DataFrame 库&#xff09;的快速内存数据处理功能相结合&#xff0c;可以显著提高数据管道的性能。在 AI 工作流中尤其如此&#xff0c;其中预处理大型数据集和执行特征选择是关键步骤。在这…...

只需要 1 分钟语音数据实现声音克隆

只需要 1 分钟语音数据实现声音克隆 GPT-SoVITS 是一个基于少量语音数据&#xff08;1 分钟左右&#xff09;即可训练出高质量 TTS&#xff08;文本转语音&#xff09;模型的开源项目&#xff0c;提供少样本语音克隆能力。目前该开源项目已经获得了 33.2k 的 Star&#xff01;…...

OpenEuler虚拟机安装保姆级教程 | 附可视化界面

0x00 系统介绍 在 2019 年 7 月 19 日&#xff0c;华为宣布要在年底正式开源 openEuler 操作系统&#xff1b;在半年后的 12 月 31 日&#xff0c;华为正式开源了 openEuler 操作系统&#xff0c;邀请社区开发者共同来贡献。 一年后&#xff0c;截止到 2020 年12 月 25日&…...

表格控件QTableWidget

下面说一下表格的常用方法 行列数目、行表头、列表头 行表头&#xff1a;就是表格控件的第一行&#xff0c;用于设置每一列的标题 列表头&#xff1a;就是表格控件的第一列&#xff0c;用于设置每一行的标题&#xff0c;通常缺省则默认显示行号 设置和获取行列的数目 在添…...

LeetCode236题:二叉树的最近公共祖先

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个节点 p、q&#xff0c;最近公共祖先表示为一个节点 x&#xff0c;满足 x 是 p、q 的祖先且 x 的深度尽可能大&#xff08;一个节点也可以是它自己的祖…...

虚谷中使用PL/SQL改变模式下所有表的大小写

一、将表名转换为小写 1、原理和思路 首先&#xff0c;我们需要查询出指定模式下的所有表名&#xff0c;在xugu中&#xff0c;数据字典dba_tables包含了当前库下的所有表信息&#xff0c;我们可以使用游标&#xff08;CURSOR&#xff09;来遍历这些表名。 2、代码示例如下&am…...

数据挖掘的基本步骤和流程解析:深入洞察与策略实施

一、引言 在数据时代的浪潮中&#xff0c;数据挖掘技术已成为企业洞察市场、优化运营和驱动创新的利器。 它融合了统计学、机器学习、数据库管理和人工智能等领域的先进技术&#xff0c;旨在从海量数据中 提取有价值的信息。 本文将深入探讨数据挖掘的六个基本步骤&#xff0c…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...