css的页面布局属性
CSS Flexbox(Flexible Box Layout)是一种用于页面布局的CSS3规范,它提供了一种更加高效的方式来布置、对齐和分配容器内元素的空间,即使它们的大小是未知或者动态变化的。Flexbox很容易处理一维布局,即在一个方向上(水平或垂直)。
Flexbox的主要属性
容器属性
display:
-
display: flex;声明一个容器为Flex容器,默认元素横向排列。 -
display: inline-flex;声明一个容器为内联Flex容器。
flex-direction:
-
决定主轴的方向(即元素的排列方向),默认为水平方向。
-
值:
row(水平,从左到右,默认值)、row-reverse(水平,从右到左)、column(垂直,从上到下)、column-reverse(垂直,从下到上)。
flex-wrap:
-
决定元素的换行方式,默认为不换行。
-
值:
nowrap(不换行,默认值)、wrap(自动换行)、wrap-reverse(反向换行)。
justify-content:
-
定义了元素在主轴上的对齐方式。
-
值:
flex-start(左对齐,默认值)、flex-end(右对齐)、center(居中)、space-between(两端对齐,元素之间的空间相等)、space-around(两端等分对齐)、space-evenly(所有元素之间的空间相等)。
align-items:
-
定义元素在交叉轴上的对齐方式。
-
值:
flex-start、flex-end、center、baseline、stretch。
align-content:
-
当有多行时,定义了行在交叉轴上的对齐方式。
-
值:
flex-start、flex-end、center、space-between、space-around、stretch。
元素属性
order:
-
定义元素的排列顺序。
-
数值越小越靠前,默认值为0。
flex-grow:
-
定义元素的放大比例。
-
数值越大,元素占据的空间越大。
flex-shrink:
-
定义元素的缩小比例。
-
数值越大,元素在空间不足时缩小得越多。
flex-basis:
-
定义元素在分配多余空间之前的默认大小。
flex:
-
是
flex-grow、flex-shrink和flex-basis的简写。 -
语法:
flex: none | [ <flex-grow> <flex-shrink>? || <flex-basis> ]即flex: 0 0 10px。
align-self:
-
允许单个元素有与其他元素不同的交叉轴对齐方式。
-
值:
auto(继承父容器的align-items值)、flex-start、flex-end、center、baseline、stretch。
注意事项
兼容性:大多数现代浏览器都支持Flexbox,但在一些旧版浏览器中可能需要厂商前缀。
调试:在开发过程中,可以使用浏览器的开发者工具来检查和调试Flexbox布局。
过度约束:Flexbox布局可能会因为多个属性的组合使用而导致“过度约束”,这可能会导致不可预见的布局结果。
性能:Flexbox通常性能很好,但在某些复杂布局或旧版浏览器中可能会导致性能问题。
Flexbox提供了一种更加强大和灵活的方式来创建响应式布局,使得开发者可以轻松地创建复杂的UI界面。
相关文章:
css的页面布局属性
CSS Flexbox(Flexible Box Layout)是一种用于页面布局的CSS3规范,它提供了一种更加高效的方式来布置、对齐和分配容器内元素的空间,即使它们的大小是未知或者动态变化的。Flexbox很容易处理一维布局,即在一个方向上&am…...
RTE 大会报名丨AI 时代新基建:云边端架构和 AI Infra ,RTE2024 技术专场第二弹!
所有 AI Infra 都在探寻规格和性能的最佳平衡,如何构建高可用的云边端协同架构? 语音 AI 实现 human-like 的最后一步是什么? AI 视频的爆炸增长,给新一代编解码技术提出了什么新挑战? 当大模型进化到实时多模态&am…...
【React】入门Day01 —— 从基础概念到实战应用
目录 一、React 概述 二、开发环境创建 三、JSX 基础 四、React 的事件绑定 五、React 组件基础使用 六、组件状态管理 - useState 七、组件的基础样式处理 快速入门 – React 中文文档 一、React 概述 React 是什么 由 Meta 公司开发,是用于构建 Web 和原生…...
<<机器学习实战>>10-11节笔记:生成器与线性回归手动实现
10生成器与python实现 如果是曲线规律的数据集,则需要把模型变复杂。如果是噪音较大,则需要做特征工程。 随机种子的知识点补充: 根据不同库中的随机过程,需要用对应的随机种子: 比如 llist(range(5)) random.shuf…...
链表OJ经典题目及思路总结(一)
目录 前言1.移除元素1.1 链表1.2 数组 2.双指针2.1 找链表的中间结点2.2 找倒数第k个结点 总结 前言 解代码题 先整体:首先数据结构链表的题一定要多画图,捋清问题的解决思路; 后局部:接着考虑每一步具体如何实现,框架…...
初识chatgpt
GPT到底是什么 首先,我们需要了解GPT的全称:Generative Pre-trained Transformer,即三个关键词:生成式 预训练 变换模型。 (1)什么是生成式? 即能够生成新的文本序列。 (2&#…...
【60天备战2024年11月软考高级系统架构设计师——第33天:云计算与大数据架构——大数据处理框架的应用场景】
随着大数据技术的发展,越来越多的企业开始采用大数据处理框架来解决实际问题。理解这些框架的应用场景对于架构师来说至关重要。 大数据处理框架的应用场景 实时数据分析:使用Apache Kafka与Apache Spark结合,可以实现对实时数据流的处理与…...
如何设计具体项目的数据库管理
### 例三:足协的数据库管理算法 #### 角色: - **ESFP学生**:小明 - **ENTP老师**:张老师 #### 主题:足协的数据库管理算法 --- **张老师**:小明,今天我们来讨论一下足协的数据库管理算法。你…...
对于 Vue CLI 项目如何引入Echarts以及动态获取数据
🚀个人主页:一颗小谷粒 🚀所属专栏:Web前端开发 很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~ 目录 1、数据画卷—Echarts介绍 1.1 什么是Echarts? 1.2 Echarts官网地址 2、Vue CLI 项目…...
【Linux笔记】在VMware中,为基于NAT模式运行的CentOS虚拟机设置固定的网络IP地址
一、配置VMware虚拟网络 1、打开VMware虚拟网络编辑器: 点击VMware主界面上方的“编辑”菜单,选择“虚拟网络编辑器”。 2、选择NAT模式网络: 在虚拟网络编辑器中,选择VMnet8(或其他NAT模式的网络)。 取消勾…...
一文上手Kafka【中】
一、发送消息细节 在发送消息的特别注意: 在版本 3.0 中,以前返回 ListenableFuture 的方法已更改为返回 CompletableFuture。为了便于迁移,2.9 版本添加了一个方法 usingCompletableFuture(),该方法为 CompletableFu…...
Ubuntu如何如何安装tcpdump
在Ubuntu上安装tcpdump非常简单,可以通过以下步骤完成: 打开终端。 更新包列表: 首先,更新你的包管理器的包列表: sudo apt update 安装tcpdump: 使用以下命令安装tcpdump: sudo apt install …...
3-3 AUTOSAR RTE 对SR Port的作用
返回总目录->返回总目录<- 一、前言 RTE作为SWC和BSW之间的通信机构,支持Sender-Receiver方式实现ECU内及ECU间的通信。 对于Sender-Receiver Port支持三种模式: 显式访问:若运行实体采用显示模式的S/R通信方式,数据读写是即时的;隐式访问:当多个运行实体需要读取…...
hive/impala/mysql几种数据库的sql常用写法和函数说明
做大数据开发的时候,会在几种库中来回跳,同一个需求,不同库函数和写法会有出入,在此做汇总沉淀。 1. hive 1. 日期差 DATEDIFF(CURRENT_DATE(),wdjv.creation_date) < 30 30天内的数据 2.impala 3. spark 4. mysql 1.时间差…...
论文阅读:LM-Cocktail: Resilient Tuning of Language Models via Model Merging
论文链接 代码链接 Abstract 预训练的语言模型不断进行微调,以更好地支持下游应用。然而,此操作可能会导致目标领域之外的通用任务的性能显著下降。为了克服这个问题,我们提出了LM Cocktail,它使微调后的模型在总体上保持弹性。我们的方法以模型合并(Model Merging)的形…...
8640 希尔(shell)排序
### 思路 希尔排序是一种基于插入排序的排序算法,通过将待排序数组分割成多个子序列分别进行插入排序来提高效率。初始增量d为n/2,之后每次减半,直到d为1。 ### 伪代码 1. 读取输入的待排序关键字个数n。 2. 读取n个待排序关键字并存储在数组…...
Linux 安装redis主从模式+哨兵模式3台节点
下载 https://download.redis.io/releases/ 解压 tar -zxvf redis-7.2.4.tar.gz -C /opt chmod 777 -R /opt/redis-7.2.4/安装 # 编译 make # 安装, 一定是大写PREFIX make PREFIX/opt/redis-7.2.4/redis/ install配置为系统服务 cd /etc/systemd/system/主服务…...
[BCSP-X2024.小高3] 学习计划
题目描述 暑假共有 n 天,第 i 天的精力指数为 a[i],你想要利用假期依次(按 1,2,...,m 顺序)复习 m 门功课,第 i 门功课的重要程度为 b[i],且每门的复习时段必须连 续,并且不能有某天不干事。 …...
Android Debug Bridge(ADB)完全指南
文章目录 前言一、什么是ADB?二、ADB的工作原理ADB由三个部分组成: 三、如何安装ADBWindows系统:macOS和Linux系统: 四、ADB常用指令大全设备相关操作1. 查看连接的设备:2. 重启设备:3. 进入Bootloader模式…...
再次重逢,愿遍地繁花
再次重逢,愿遍地繁花 我并不是一个对最终幻想7很热衷的粉丝,也并没有像那些评论区的大佬,能够轻易地说出整部世界的全貌。说到底,我只是一个看完了《最终幻想7:重制版》和《最终幻想7:重生》的爱好者罢了。…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
