Bert Score-文本相似性评估
Bert Score
Bert Score 是基于BERT模型的一种方法。它通过计算两个句子在BERT模型中的嵌入编码之间的余弦相似度来评估它们的相似度。BERTScore考虑了上下文信息和语义信息,因此能够更准确地衡量句子之间的相似度。
安装
pip install bert-score
使用例子
- 一个句子和一个句子的比较
cand=["I have an apple."]
ref=["I have a pen."]
P, R, F1 = bert_score.score(cand,ref, lang="en", verbose=True,model_type='bert-large-uncased')
#tensor([0.8176]) tensor([0.8176]) tensor([0.8176])
- 一个句子和多个句子的比较
cand=["I have an apple."]
ref=[["I have a pen.","I have a doll"]]
P, R, F1 = bert_score.score(cand,ref, lang="en", verbose=True,model_type='bert-large-uncased')#tensor([0.8176]) tensor([0.8176]) tensor([0.8176])
- 多个句子和多个句子之间的比较
cand=["I have an apple.","I am Lucky."]
ref=["I have a pen.","I am Lucy."]
P, R, F1 = bert_score.score(cand,ref, lang="en", verbose=True,model_type='bert-large-uncased')#tensor([0.8176, 0.6489]) tensor([0.8176, 0.6489]) tensor([0.8176, 0.6489])
- 这里的model_type用于指定模型,可以点击仓库查看
- 这里的返回值在0-1之间,越接近1说明越相似
相关文章:
Bert Score-文本相似性评估
Bert Score Bert Score 是基于BERT模型的一种方法。它通过计算两个句子在BERT模型中的嵌入编码之间的余弦相似度来评估它们的相似度。BERTScore考虑了上下文信息和语义信息,因此能够更准确地衡量句子之间的相似度。 安装 pip install bert-score 使用例子 一个…...
Pyenv管理Python版本,conda之外的另一套python版本管理解决方案
简介 Pyenv 是一个 python 解释器管理工具,可以对计算机中的多个 python 版本进行管理和切换。为什么要用 pyenv 管理python呢,用过的 python 人都知道,python 虽然是易用而强大的编程语言,但是 python 解释器却有多个版本&#…...
快速实现AI搜索!Fivetran 支持 Milvus 作为数据迁移目标
Fivetran 现已支持 Milvus 向量数据库作为数据迁移的目标,能够有效简化 RAG 应用和 AI 搜索中数据源接入的流程。 数据是 AI 应用的支柱,无缝连接数据是充分释放数据潜力的关键。非结构化数据对于企业搜索和检索增强生成(RAG)聊天…...
css的页面布局属性
CSS Flexbox(Flexible Box Layout)是一种用于页面布局的CSS3规范,它提供了一种更加高效的方式来布置、对齐和分配容器内元素的空间,即使它们的大小是未知或者动态变化的。Flexbox很容易处理一维布局,即在一个方向上&am…...
RTE 大会报名丨AI 时代新基建:云边端架构和 AI Infra ,RTE2024 技术专场第二弹!
所有 AI Infra 都在探寻规格和性能的最佳平衡,如何构建高可用的云边端协同架构? 语音 AI 实现 human-like 的最后一步是什么? AI 视频的爆炸增长,给新一代编解码技术提出了什么新挑战? 当大模型进化到实时多模态&am…...
【React】入门Day01 —— 从基础概念到实战应用
目录 一、React 概述 二、开发环境创建 三、JSX 基础 四、React 的事件绑定 五、React 组件基础使用 六、组件状态管理 - useState 七、组件的基础样式处理 快速入门 – React 中文文档 一、React 概述 React 是什么 由 Meta 公司开发,是用于构建 Web 和原生…...
<<机器学习实战>>10-11节笔记:生成器与线性回归手动实现
10生成器与python实现 如果是曲线规律的数据集,则需要把模型变复杂。如果是噪音较大,则需要做特征工程。 随机种子的知识点补充: 根据不同库中的随机过程,需要用对应的随机种子: 比如 llist(range(5)) random.shuf…...
链表OJ经典题目及思路总结(一)
目录 前言1.移除元素1.1 链表1.2 数组 2.双指针2.1 找链表的中间结点2.2 找倒数第k个结点 总结 前言 解代码题 先整体:首先数据结构链表的题一定要多画图,捋清问题的解决思路; 后局部:接着考虑每一步具体如何实现,框架…...
初识chatgpt
GPT到底是什么 首先,我们需要了解GPT的全称:Generative Pre-trained Transformer,即三个关键词:生成式 预训练 变换模型。 (1)什么是生成式? 即能够生成新的文本序列。 (2&#…...
【60天备战2024年11月软考高级系统架构设计师——第33天:云计算与大数据架构——大数据处理框架的应用场景】
随着大数据技术的发展,越来越多的企业开始采用大数据处理框架来解决实际问题。理解这些框架的应用场景对于架构师来说至关重要。 大数据处理框架的应用场景 实时数据分析:使用Apache Kafka与Apache Spark结合,可以实现对实时数据流的处理与…...
如何设计具体项目的数据库管理
### 例三:足协的数据库管理算法 #### 角色: - **ESFP学生**:小明 - **ENTP老师**:张老师 #### 主题:足协的数据库管理算法 --- **张老师**:小明,今天我们来讨论一下足协的数据库管理算法。你…...
对于 Vue CLI 项目如何引入Echarts以及动态获取数据
🚀个人主页:一颗小谷粒 🚀所属专栏:Web前端开发 很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~ 目录 1、数据画卷—Echarts介绍 1.1 什么是Echarts? 1.2 Echarts官网地址 2、Vue CLI 项目…...
【Linux笔记】在VMware中,为基于NAT模式运行的CentOS虚拟机设置固定的网络IP地址
一、配置VMware虚拟网络 1、打开VMware虚拟网络编辑器: 点击VMware主界面上方的“编辑”菜单,选择“虚拟网络编辑器”。 2、选择NAT模式网络: 在虚拟网络编辑器中,选择VMnet8(或其他NAT模式的网络)。 取消勾…...
一文上手Kafka【中】
一、发送消息细节 在发送消息的特别注意: 在版本 3.0 中,以前返回 ListenableFuture 的方法已更改为返回 CompletableFuture。为了便于迁移,2.9 版本添加了一个方法 usingCompletableFuture(),该方法为 CompletableFu…...
Ubuntu如何如何安装tcpdump
在Ubuntu上安装tcpdump非常简单,可以通过以下步骤完成: 打开终端。 更新包列表: 首先,更新你的包管理器的包列表: sudo apt update 安装tcpdump: 使用以下命令安装tcpdump: sudo apt install …...
3-3 AUTOSAR RTE 对SR Port的作用
返回总目录->返回总目录<- 一、前言 RTE作为SWC和BSW之间的通信机构,支持Sender-Receiver方式实现ECU内及ECU间的通信。 对于Sender-Receiver Port支持三种模式: 显式访问:若运行实体采用显示模式的S/R通信方式,数据读写是即时的;隐式访问:当多个运行实体需要读取…...
hive/impala/mysql几种数据库的sql常用写法和函数说明
做大数据开发的时候,会在几种库中来回跳,同一个需求,不同库函数和写法会有出入,在此做汇总沉淀。 1. hive 1. 日期差 DATEDIFF(CURRENT_DATE(),wdjv.creation_date) < 30 30天内的数据 2.impala 3. spark 4. mysql 1.时间差…...
论文阅读:LM-Cocktail: Resilient Tuning of Language Models via Model Merging
论文链接 代码链接 Abstract 预训练的语言模型不断进行微调,以更好地支持下游应用。然而,此操作可能会导致目标领域之外的通用任务的性能显著下降。为了克服这个问题,我们提出了LM Cocktail,它使微调后的模型在总体上保持弹性。我们的方法以模型合并(Model Merging)的形…...
8640 希尔(shell)排序
### 思路 希尔排序是一种基于插入排序的排序算法,通过将待排序数组分割成多个子序列分别进行插入排序来提高效率。初始增量d为n/2,之后每次减半,直到d为1。 ### 伪代码 1. 读取输入的待排序关键字个数n。 2. 读取n个待排序关键字并存储在数组…...
Linux 安装redis主从模式+哨兵模式3台节点
下载 https://download.redis.io/releases/ 解压 tar -zxvf redis-7.2.4.tar.gz -C /opt chmod 777 -R /opt/redis-7.2.4/安装 # 编译 make # 安装, 一定是大写PREFIX make PREFIX/opt/redis-7.2.4/redis/ install配置为系统服务 cd /etc/systemd/system/主服务…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...
