当前位置: 首页 > news >正文

图神经网络:处理复杂关系结构与图分类任务的强大工具

创作不易,您的打赏、关注、点赞、收藏和转发是我坚持下去的动力!图神经网络

图神经网络(Graph Neural Network, GNN)是针对图数据的一类神经网络模型。图数据具有节点(节点代表实体)和边(边代表节点之间的关系),因此,GNN能够处理这种复杂的关系结构,提取图结构中有用的信息。GNN的基本思想是通过消息传递(message passing)机制将节点和它们的邻居进行特征融合,从而更新节点的表示。这种表示可以用来进行节点分类、边预测或者整个图的分类等任务。

1. GNN基础知识

GNN的核心机制是基于图的消息传递和特征聚合。对于每个节点,GNN会收集其邻居节点的信息,然后通过一定的聚合函数(例如求和或平均)生成新的特征表示。

1.1 图的定义
  • 节点(Node):图中的实体,记作 (v_i)。
  • 边(Edge):节点之间的关系,记作 (e_{ij}),表示从节点 (v_i) 到节点 (v_j) 的连接。
  • 邻居节点(Neighbors):节点 (v_i) 的直接相连节点集合,记作 (N(v_i))。
1.2 GNN的消息传递机制

GNN的基本操作包括两个步骤:

  1. 消息传递(Message Passing):从每个节点的邻居节点收集特征。
  2. 特征更新(Feature Update):将节点的特征与邻居的特征聚合,更新节点的表示。

假设节点 (v_i) 的初始特征为 (h_i^{(0)}),其第 (k) 次迭代时的特征表示为 (h_i^{(k)})。GNN通过以下两步进行更新:

  • 聚合邻居特征:将节点 (v_i) 的所有邻居节点的特征聚合起来,例如求和或平均:
    [
    m_i^{(k)} = \text{AGGREGATE}({ h_j^{(k-1)} : j \in N(v_i) })
    ]
  • 更新节点特征:将聚合的邻居特征与节点本身的特征结合起来,更新节点的表示:
    [
    h_i^{(k)} = \text{UPDATE}(h_i^{(k-1)}, m_i^{(k)})
    ]
1.3 GNN在图分类任务中的应用

图分类任务的目标是给定一张图,预测该图的类别。常见应用包括化学分子分类、社交网络分析等。在这种任务中,GNN的目标是通过学习图的全局结构信息来预测整张图的标签。

GNN处理图分类任务的流程一般如下:

  1. 特征初始化:给每个节点赋予初始特征(可以是节点的属性)。
  2. 消息传递与特征更新:通过多层GNN层,将节点特征与其邻居进行聚合和更新。
  3. 图的汇总(Readout):将所有节点的特征汇总为图的表示(例如通过求平均或全连接层)。
  4. 分类器:使用图的表示作为输入,通过一个分类器预测图的类别。

2. Python实现示例

我们可以使用PyTorch Geometric来实现一个简单的图分类任务。

2.1 安装依赖

首先,你需要安装PyTorchPyTorch Geometric库:

pip install torch
pip install torch-geometric
2.2 数据准备

我们使用PyTorch Geometric中的一个经典的图分类数据集MUTAG,这是一个小型化学分子数据集,每个分子作为一张图,目标是预测分子的类别。

import torch
import torch.nn.functional as F
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DataLoader
from torch_geometric.nn import GCNConv, global_mean_pool# 加载数据集
dataset = TUDataset(root='/tmp/MUTAG', name='MUTAG')# 划分训练集和测试集
train_dataset = dataset[:150]
test_dataset = dataset[150:]train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
2.3 定义GNN模型

我们定义一个简单的图卷积网络(GCN)用于图分类任务。

class GCN(torch.nn.Module):def __init__(self):super(GCN, self).__init__()# 定义两个GCN层self.conv1 = GCNConv(dataset.num_node_features, 64)self.conv2 = GCNConv(64, 64)# 最后一个全连接层用于图分类self.fc = torch.nn.Linear(64, dataset.num_classes)def forward(self, data):x, edge_index, batch = data.x, data.edge_index, data.batch# 第一层GCN + ReLU激活x = self.conv1(x, edge_index)x = F.relu(x)# 第二层GCNx = self.conv2(x, edge_index)# 使用全局平均池化将节点特征聚合为图的特征x = global_mean_pool(x, batch)# 最后通过全连接层进行分类x = self.fc(x)return F.log_softmax(x, dim=1)
2.4 模型训练和测试

我们定义训练和测试的函数,分别用于训练模型和评估模型的性能。

# 定义设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GCN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)def train():model.train()total_loss = 0for data in train_loader:data = data.to(device)optimizer.zero_grad()output = model(data)loss = F.nll_loss(output, data.y)loss.backward()optimizer.step()total_loss += loss.item()return total_loss / len(train_loader)def test(loader):model.eval()correct = 0for data in loader:data = data.to(device)output = model(data)pred = output.argmax(dim=1)correct += pred.eq(data.y).sum().item()return correct / len(loader.dataset)# 训练模型
for epoch in range(1, 201):loss = train()test_acc = test(test_loader)print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Test Acc: {test_acc:.4f}')
2.5 解释代码
  • GCNConv:图卷积层,用于将节点的特征与其邻居的特征进行聚合。
  • global_mean_pool:对图中的所有节点特征进行全局池化,将节点特征汇总为图的特征表示。
  • forward:定义了模型的前向传播,输入图的特征和结构,输出图的类别预测。

通过上述代码,你可以用GNN进行图分类任务。这个模型会对每张图中的所有节点进行特征更新,并最终通过全连接层进行分类。

大家有技术交流指导、论文及技术文档写作指导、课程知识点讲解、项目开发合作的需求可以搜索关注我私信我

在这里插入图片描述

相关文章:

图神经网络:处理复杂关系结构与图分类任务的强大工具

创作不易,您的打赏、关注、点赞、收藏和转发是我坚持下去的动力! 图神经网络(Graph Neural Network, GNN)是针对图数据的一类神经网络模型。图数据具有节点(节点代表实体)和边(边代表节点之间的…...

LeetCode: 1971. 寻找图中是否存在路径

寻找图中是否存在路径 原题 有一个具有 n 个顶点的 双向 图,其中每个顶点标记从 0 到 n - 1(包含 0 和 n - 1)。图中的边用一个二维整数数组 edges 表示,其中 edges[i] [ui, vi] 表示顶点 ui 和顶点 vi 之间的双向边。 每个顶点…...

mysql 查询表所有数据,分页的语句

在 MySQL 中,若要从表中查询所有数据并实现分页,你可以使用 SELECT 语句结合 LIMIT 和 OFFSET 子句。LIMIT 用于指定返回的记录数,而 OFFSET 则用于指定从哪一条记录开始返回(即跳过的记录数)。 以下是一个基本的分页…...

TI DSP TMS320F280025 Note13:CPUtimer定时器原理分析与使用

TMS320F280025 CPUtimer定时器原理分析与使用 ` 文章目录 TMS320F280025 CPUtimer定时器原理分析与使用框图分析定时器中断定时器使用CPUtimers.cCPUtimers.h框图分析 定时器框图如图所示 定时器有一个预分频模块和一个定时/计数模块, 其中预分频模块包括一个 16 位的定时器分…...

Australis 相機率定軟體說明

概要 課堂中使用Australis這套軟體,順帶記錄操作過程 內容以老師口述及我測試的經過 照片為老師課堂提供之 說明 執行 Step1. 匯入照片 注意!!如果是Mac的作業系統,將資料夾移到Windows上的時候,建議創一個新的資料…...

C++入门(有C语言基础)

string类 string类初始化的方式大概有以下几种: string str1;string str2 "hello str2";string str3("hello str3");string str4(5, B);string str5[3] {"Xiaomi", "BYD", "XPeng"};string str6 str5[2];str…...

第四届高性能计算与通信工程国际学术会议(HPCCE 2024)

目录 大会简介 主办单位,承办单位 征稿主题 会议议程 参会方式 大会官网:www.hpcce.net 大会简介 第四届高性能计算与通信工程国际学术会议(HPCCE 2024)将于2024年11月22-24日在苏州召开。HPCCE 2024将围绕“高性能计算与通信工…...

负载均衡架构解说

负载均衡架构是一种设计模式,用于在多个服务器之间分配网络或应用流量,以提高资源利用率、最大化吞吐量、减少响应时间,并确保高可用性。 负载均衡架构的关键组件和概念: 关键组件 1.负载均衡器(Load Balancer&…...

【异常数据检测】孤立森林算法异常数据检测算法(数据可视化 Matlab语言)

摘要 本文研究了基于孤立森林算法的异常数据检测方法,并在MATLAB中实现了该算法的可视化。孤立森林是一种无监督的异常检测算法,主要通过构建决策树来区分正常数据和异常数据。本文使用真实数据集,通过二维可视化展示了检测结果。实验结果表…...

MKV转MP4丨FFmpeg的简单命令使用——视频格式转换

MKV是一种视频封装格式,很好用,也是OBS的默认推荐录制格式,因为不会突然断电关机而导致整个视频录制文件丢失。 但是MKV无法直接导入PR中剪辑,最直接的方法是将MKV转换为MP4格式,最方便且安全无损的转换方法便是用FFmp…...

git使用“保姆级”教程4——版本回退及分支讲解

一、版本回退 1、历史回退(版本回退)——命令行git reset --hard 版本编号 注意:当前命令会让工作区的内容发生改变,可以理解成历史区(master分支)直接回到工作区比如:从版本4回到版本3,则工作区只会显示版本3的代码内容 1.1、指…...

spring cache,Spring data redis

本项目使用Redis存储缓存数据,如何通过Java去访问Redis? 常用的有Jedis和Lettuce两个访问redis的客户端类库 ,Jedis和Lettuce都是redis提供的。其中Lettuce的性能和并发性要好一些,Spring Boot 默认使用的是 Lettuce 作为 Redis …...

10.数据结构与算法-线性表的应用(线性表与有序表的合并)

线性表的合并 有序表的合并 顺序表 链表...

GAN|对抗| 生成器更新|判别器更新过程

如上图所示,生成对抗网络存在上述内容: 真实数据集;生成器;生成器损失函数;判别器;判别器损失函数;生成器、判别器更新(生成器和判别器就是小偷和警察的关系,他们共用的…...

day01——登录功能

逻辑: 前端将登录信息通过报文的形式,发送给后端。后端进行登陆验证 2.1 根据接受的用户名,查询数据表。 若不存在该用户的记录,返回用户不存在。 若用户存在,判断数据库中的密码和接收的是否一致,不一致则…...

Flutter中使用FFI的方式链接C/C++的so库(harmonyos)

Flutter中使用FFI的方式链接C/C库(harmonyos) FFI plugin创建和so的配置FFI插件对so库的使用 FFI plugin创建和so的配置 首先我们可以根据下面的链接生成FFI plugin插件:开发FFI plugin插件 然后在主项目中pubspec.yaml 添加插件的依赖路径&…...

【C++】二义性

在C中,二义性(ambiguity)通常指的是编译器无法确定使用哪个函数、变量或类成员的情况。这种不确定性通常是由于继承和多态特性导致的。下面是一些常见的产生二义性的场景以及如何解决它们的方法: 1. 多重继承中的二义性 当一个类…...

高并发内存池(五):ThreadCache、CentralCache和PageCache的内存回收机制、阶段性代码展示和释放内存过程的调试

目录 ThreadCache的内存回收机制 补充内容1 补充内容2 补充内容3 补充内容4 ListTooLong函数的实现 CentralCache的内存回收机制 MapObjectToSpan函数的实现 ReleaseListToSpans函数的实现 PageCache的内存回收机制 补充内容1 补充内容2 ReleaseSpanToPageCache函…...

STL之stackqueue篇(上)探索C++ STL中的Queue与Stack——构建数据处理的基础框架

文章目录 前言一、stack1.1 定义与基本概念1.2 底层容器1.3 成员函数1.4 使用示例1.5 注意事项1.6 应用场景 二、queue2.1 定义与基本概念2.2 底层容器2.3 成员函数2.4 使用示例2.5 注意事项2.6 应用场景 前言 本文旨在深入探讨C STL中的queue与stack容器,从它们的…...

代码随想录算法训练营Day13

110.平衡二叉树 力扣题目链接:. - 力扣(LeetCode) 后序迭代 class Solution {public boolean isBalanced(TreeNode root) {return getHeight(root)!-1;}public int getHeight(TreeNode root){if(rootnull){return 0;}int leftheightgetHei…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...

深入解析 ReentrantLock:原理、公平锁与非公平锁的较量

ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...

统计学(第8版)——统计抽样学习笔记(考试用)

一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征&#xff08;均值、比率、总量&#xff09;控制抽样误差与非抽样误差 解决的核心问题 在成本约束下&#xff0c;用少量样本准确推断总体特征量化估计结果的可靠性&#xff08;置…...

C#最佳实践:为何优先使用as或is而非强制转换

C#最佳实践&#xff1a;为何优先使用as或is而非强制转换 在 C# 的编程世界里&#xff0c;类型转换是我们经常会遇到的操作。就像在现实生活中&#xff0c;我们可能需要把不同形状的物品重新整理归类一样&#xff0c;在代码里&#xff0c;我们也常常需要将一个数据类型转换为另…...

前端打包工具简单介绍

前端打包工具简单介绍 一、Webpack 架构与插件机制 1. Webpack 架构核心组成 Entry&#xff08;入口&#xff09; 指定应用的起点文件&#xff0c;比如 src/index.js。 Module&#xff08;模块&#xff09; Webpack 把项目当作模块图&#xff0c;模块可以是 JS、CSS、图片等…...

20250607在荣品的PRO-RK3566开发板的Android13系统下实现长按开机之后出现插入适配器不会自动启动的问题的解决

20250607在荣品的PRO-RK3566开发板的Android13系统下实现长按开机之后出现插入适配器不会自动启动的问题的解决 2025/6/7 17:20 缘起&#xff1a; 1、根据RK809的DATASHEET&#xff0c;短按开机【100ms/500ms】/长按关机&#xff0c;长按关机。6s/8s/10s 我在网上找到的DATASHE…...