当前位置: 首页 > news >正文

u2net网络模型训练自己数据集

单分类
下载项目源码
项目源码

准备数据集
将json转为mask
json_to_dataset.py

import cv2
import json
import numpy as np
import os
import sys
import globdef func(file):with open(file, mode='r', encoding="utf-8") as f:configs = json.load(f)shapes = configs["shapes"]png_class = np.zeros((configs["imageHeight"], configs["imageWidth"], 1), np.uint8)png_other = np.zeros((configs["imageHeight"], configs["imageWidth"], 1), np.uint8)for shape in shapes:label = shape['label']if label == 'class':cv2.fillPoly(png_class, [np.array(shape["points"], np.int32)], (255))else:cv2.fillPoly(png_other, [np.array(shape["points"], np.int32)], (255))png = png_class - png_otherreturn pngif __name__ == "__main__":json_dir = "image"save_dir = 'image/masks'for file in os.listdir(json_dir):print('***************', file)if file.endswith(".json"):# 在这里添加后续步骤png = func(os.path.join(json_dir, file))print(png.shape)save_path = save_dir + '/' + os.path.splitext(file)[0] + ".png"cv2.imwrite(save_path, png)print('***************', save_path)

创建文件路径

train_data|__DUTS|__DUTS-TR|__im_aug			# mask图|__gt_aug			# 原图|__DUTS-TE|__im_aug			# mask图|__gt_aug			# 原图

训练
修改u2net_train.py

# ------- 2. set the directory of training dataset --------model_name = 'u2net' #'u2netp'											# 选择模型# 修改为对应的数据集路径
data_dir = os.path.join(os.getcwd(), 'train_data' + os.sep)
tra_image_dir = os.path.join('DUTS', 'DUTS-TR', 'im_aug' + os.sep)
tra_label_dir = os.path.join('DUTS', 'DUTS-TR', 'gt_aug' + os.sep)image_ext = '.jpg'
label_ext = '.png'model_dir = os.path.join(os.getcwd(), 'saved_models', model_name + os.sep)

alpha_export.py为转换模型,u2net_test.py模型预测

多分类
准备数据集
将json转为mask,由于是多分类,每一个分类一个rgb值,例如分类1(1,1,1),分类2(2,2,2),分类3(3,3,3);

import cv2
import json
import numpy as np
import os
import sys
import globdef func(file):with open(file, mode='r', encoding="utf-8") as f:configs = json.load(f)shapes = configs["shapes"]class1 = np.zeros((configs["imageHeight"], configs["imageWidth"], 3), np.uint8)class2 = np.zeros((configs["imageHeight"], configs["imageWidth"], 3), np.uint8)class3 = np.zeros((configs["imageHeight"], configs["imageWidth"], 3), np.uint8)for shape in shapes:label = shape['label']if label == 'class1':cv2.fillPoly(class1, [np.array(shape["points"], np.int32)], (1, 1, 1))elif label == 'class2':cv2.fillPoly(class2, [np.array(shape["points"], np.int32)], (2, 2, 2))elif label == 'class3':cv2.fillPoly(class3, [np.array(shape["points"], np.int32)], (3, 3, 3))return class1 + class2 + class3if __name__ == "__main__":json_dir = "./train_data/labels_json"save_dir = './train_data/masks'for file in os.listdir(json_dir):print('***************', file)if file.endswith(".json"):# 在这里添加后续步骤png = func(os.path.join(json_dir, file))print(png.shape)save_path = save_dir + '/' + os.path.splitext(file)[0] + ".png"cv2.imwrite(save_path, png)print('***************', save_path)

数据集文件夹

datasets|__train_data|__images		# 原图|__1.jpg|__2.jpg|__3.jpg|__masks		# mask图|__1.png|__2.png|__3.png|__test_data|__images|__1.jpg|__2.jpg|__3.jpg|__masks|__1.png|__2.png|__3.png|__my_results_2|__predeict_lables|__predict_masks

训练

# ------- 2. set the directory of training process --------
model_name = 'u2net'  # 'u2net'							# 选择模型
model_dir = os.path.join('saved_models', model_name + os.sep)# 图片的文件类型
image_ext = '.jpg'
label_ext = '.png'# train阶段
# 数据集路径
data_dir = os.path.join("datasets/train_data" + os.sep)
# 原始图片路径
tra_image_dir = os.path.join('images' + os.sep)
# 图片的标签路径
tra_label_dir = os.path.join('masks' + os.sep)# val阶段
# 数据集类别
num_classes = 4			# 背景+类别数
name_classes = ["background", "class1", "class2","class3"]
# 原始图片路径
images_path = "datasets/test_data/images/"
# 图片的标签路径
gt_dir = "datasets/test_data/masks/"
# 存放推理结果图片的路径
pred_dir = "datasets/test_data/predict_masks/"
predict_label = "datasets/test_data/predict_labels/"
# 存放 miou 计算结果的 图片
miou_out_path = "miou_out_tab"
# 预训练权重
seg_pretrain_u2netp_path = 'saved_models/pretrain_model/segm_u2net.pth'
if not os.path.exists(model_dir):os.makedirs(model_dir)epoch_num = 100
batch_size = 2
train_num = 0
val_num = 0

执行u2net_train.py,开始训练

预测

if __name__ == "__main__":#   miou_mode用于指定该文件运行时计算的内容#   miou_mode为0代表整个miou计算流程,包括获得预测结果、计算miou。#   miou_mode为1代表仅仅获得预测结果。#   miou_mode为2代表仅仅计算miou。#   分类个数+1、如2+1# num_classes = 3# name_classes = ["background", "green", "red"]num_classes = 4name_classes =["background", "class1", "class2","class3"]# 原始图片路径images_path = "datasets_ButtonCell/test_data/images/"# 图片的标签路径gt_dir = "datasets_ButtonCell/test_data/masks/"# 存放推理结果图片的路径pred_dir = "datasets_ButtonCell/test_data/predict_masks/"predict_label = "datasets_ButtonCell/test_data/predict_labels/"# 存放 miou 计算结果的 图片miou_out_path = "miou_out"# 模型路径model_dir = './saved_models/u2netp/u2netp.pth'eval_print_miou(num_classes, name_classes, images_path, gt_dir, pred_dir, predict_label, miou_out_path, model_dir)

执行u2net_val.py,开始训练

torch2onnx.py进行模型转换

相关文章:

u2net网络模型训练自己数据集

单分类 下载项目源码 项目源码 准备数据集 将json转为mask json_to_dataset.py import cv2 import json import numpy as np import os import sys import globdef func(file):with open(file, moder, encoding"utf-8") as f:configs json.load(f)shapes configs…...

登录功能开发 P167重点

会话技术: cookie jwt令牌会话技术: jwt生成: Claims:jwt中的第二部分 过滤器: 拦截器: 前端无法识别controller方法,因此存在Dispa什么的...

数据架构图:从数据源到数据消费的全面展示

在这篇文章中,我们将探讨如何通过架构图来展示数据的整个生命周期,从数据源到数据消费。下面是一个使用Mermaid格式的示例数据架构图,展示了数据从源到消费的流动、处理和存储过程。 数据架构图示例 说明 数据源:分为内部数据源&…...

useEffect 与 useLayoutEffect 的区别

useEffect 与 useLayoutEffect 的区别 useEffect和useLayoutEffect是处理副作用的React钩子函数,有以下区别1. 执行时机不同2. 对性能影响不同3. 对渲染的影响不同:4. 使用场景不同 使用建议 useEffect和useLayoutEffect是处理副作用的React钩子函数&…...

OPENCV判断图像中目标物位置及多目标物聚类

文章目录 在最近的项目中,又碰到一个有意思的问题需要通过图像算法来解决。就是显微拍摄的到的医疗图像中,有时候目标物比较偏,也就是在图像的比较偏的位置,需要通过移动样本,将目标物置于视野正中央,然后再…...

分布式理论:拜占庭将军问题

分布式理论:拜占庭将军问题 介绍拜占庭将军的故事将军的难题 解决方案口信消息型拜占庭问题之解流程总结 签名消息型拜占庭问题之解 总结 介绍 拜占庭将军问题是对分布式共识问题的一种情景化描述,由兰伯特于1082首次发表《The Byzantine Generals Prob…...

从零开始Ubuntu24.04上Docker构建自动化部署(三)Docker安装Nginx

安装nginx sudo docker pull nginx 启动nginx 宿主机创建目录 sudo mkdir -p /home/nginx/{conf,conf.d,html,logs} 先启动nginx sudo docker run -d --name mynginx -p 80:80 nginx 宿主机上拷贝docker上nginx服务上文件到本地目录 sudo docker cp mynginx:/etc/nginx/ngin…...

阿里云 SAE Web:百毫秒高弹性的实时事件中心的架构和挑战

作者:胡志广(独鳌) 背景 Serverless 应用引擎 SAE 事件中心主要面向早期的 SAE 控制台只有针对于应用维度的事件,这个事件是 K8s 原生的事件,其实绝大多数的用户并不会关心,同时也可能看不懂。而事件中心,是希望能够…...

人口普查管理系统基于VUE+SpringBoot+Spring+SpringMVC+MyBatis开发设计与实现

目录 1. 系统概述 2. 系统架构设计 3. 技术实现细节 3.1 前端实现 3.2 后端实现 3.3 数据库设计 4. 安全性设计 5. 效果展示 ​编辑​编辑 6. 测试与部署 7. 示例代码 8. 结论与展望 一个基于 Vue Spring Boot Spring Spring MVC MyBatis 的人口普查管理…...

使用VBA快速将文本转换为Word表格

Word提供了一个强大的文本转表格的功能,结合VBA可以实现文本快速转换表格。 示例文档如下所示。 现在需要将上述文档内容转换为如下格式的表格,表格内容的起始标志为。 示例代码如下。 Sub SearchTab()Application.DefaultTableSeparator "*&quo…...

力扣题解1870

这道题是一个典型的算法题,涉及计算在限制的时间内列车速度的最小值。这是一个优化问题,通常需要使用二分查找来求解。 题目描述(中等) 准时到达的列车最小时速 给你一个浮点数 hour ,表示你到达办公室可用的总通勤时…...

D3.js数据可视化基础——基于Notepad++、IDEA前端开发

实验:D3.js数据可视化基础 1、实验名称 D3数据可视化基础 2、实验目的 熟悉D3数据可视化的使用方法。 3、实验原理 D3 的全称是(Data-Driven Documents),是一个被数据驱动的文档,其实就是一个 JavaScript 的函数库,使用它主要是用来做数据可视化的。本次实…...

在Robot Framework中Run Keyword If的用法

基本用法使用 ELSE使用 ELSE IF使用内置变量使用Python表达式本文永久更新地址: 在Robot Framework中,Run Keyword If 是一个条件执行的关键字,它允许根据某个条件来决定是否执行某个关键字。下面是 Run Keyword If 的基本用法: Run Keyword…...

虚拟机ip突然看不了了

打印大致如下: 解决办法 如果您发现虚拟机的IP地址与主机不在同一网段,可以采取的措施之一是调整网络设置。将虚拟机的网络模式更改为桥接模式,这样它就会获得与主机相同的IP地址,从而处于同一网段。或者,您可以使用…...

LeetCode[中等] 763. 划分字母区间

给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。 注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。 返回一个表示每个字符串片段的长度的列表。 思路 贪心…...

Java LeetCode每日一题

997. 找到小镇的法官 package JavaExercise20241002;public class JavaExercise {public static void main(String[] args) {int[][] array {{1,3},{2,3},{3,1}};Solution solution new Solution();System.out.println(solution.findJudge(3, array));} }class Solution {pu…...

数据结构--集合框架

目录 1. 什么是集合框架 2. 背后所涉及的数据结构以及算法 2.1 什么是数据结构 2.2 容器背后对应的数据结构 1. 什么是集合框架 Java 集合框架 Java Collection Framework ,又被称为容器 container ,是定义在 java.util 包下的一组接口 int…...

Win10鼠标总是频繁自动失去焦点-非常有效-重启之后立竿见影

针对Win10鼠标频繁自动失去焦点的问题,可以尝试以下解决方案: 一、修改注册表(最有效的方法-重启之后立竿见影) 打开注册表编辑器: 按下WindowsR组合键,打开运行窗口。在运行窗口中输入“regedit”&#x…...

智能涌现|迎接智能时代,算力产业重构未来

前言 OpenAI首席执行官山姆奥特曼在《智能时代》中描绘了一个令人振奋的未来图景,其中算力产业将扮演至关重要的角色。奥特曼预测,我们可能在“几千天内”迎来超级智能,这一进程将极大加速社会结构的智能化转型。 这一预测与算力产业的未来…...

关于HTML 案例_个人简历展示01

案例效果展示 代码 <!DOCTYPE html> <lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>个人简历信息</title> </he…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...