u2net网络模型训练自己数据集
单分类
 下载项目源码
 项目源码
准备数据集
 将json转为mask
 json_to_dataset.py
import cv2
import json
import numpy as np
import os
import sys
import globdef func(file):with open(file, mode='r', encoding="utf-8") as f:configs = json.load(f)shapes = configs["shapes"]png_class = np.zeros((configs["imageHeight"], configs["imageWidth"], 1), np.uint8)png_other = np.zeros((configs["imageHeight"], configs["imageWidth"], 1), np.uint8)for shape in shapes:label = shape['label']if label == 'class':cv2.fillPoly(png_class, [np.array(shape["points"], np.int32)], (255))else:cv2.fillPoly(png_other, [np.array(shape["points"], np.int32)], (255))png = png_class - png_otherreturn pngif __name__ == "__main__":json_dir = "image"save_dir = 'image/masks'for file in os.listdir(json_dir):print('***************', file)if file.endswith(".json"):# 在这里添加后续步骤png = func(os.path.join(json_dir, file))print(png.shape)save_path = save_dir + '/' + os.path.splitext(file)[0] + ".png"cv2.imwrite(save_path, png)print('***************', save_path)创建文件路径
train_data|__DUTS|__DUTS-TR|__im_aug			# mask图|__gt_aug			# 原图|__DUTS-TE|__im_aug			# mask图|__gt_aug			# 原图
训练
 修改u2net_train.py
# ------- 2. set the directory of training dataset --------model_name = 'u2net' #'u2netp'											# 选择模型# 修改为对应的数据集路径
data_dir = os.path.join(os.getcwd(), 'train_data' + os.sep)
tra_image_dir = os.path.join('DUTS', 'DUTS-TR', 'im_aug' + os.sep)
tra_label_dir = os.path.join('DUTS', 'DUTS-TR', 'gt_aug' + os.sep)image_ext = '.jpg'
label_ext = '.png'model_dir = os.path.join(os.getcwd(), 'saved_models', model_name + os.sep)
alpha_export.py为转换模型,u2net_test.py模型预测
多分类
 准备数据集
 将json转为mask,由于是多分类,每一个分类一个rgb值,例如分类1(1,1,1),分类2(2,2,2),分类3(3,3,3);
import cv2
import json
import numpy as np
import os
import sys
import globdef func(file):with open(file, mode='r', encoding="utf-8") as f:configs = json.load(f)shapes = configs["shapes"]class1 = np.zeros((configs["imageHeight"], configs["imageWidth"], 3), np.uint8)class2 = np.zeros((configs["imageHeight"], configs["imageWidth"], 3), np.uint8)class3 = np.zeros((configs["imageHeight"], configs["imageWidth"], 3), np.uint8)for shape in shapes:label = shape['label']if label == 'class1':cv2.fillPoly(class1, [np.array(shape["points"], np.int32)], (1, 1, 1))elif label == 'class2':cv2.fillPoly(class2, [np.array(shape["points"], np.int32)], (2, 2, 2))elif label == 'class3':cv2.fillPoly(class3, [np.array(shape["points"], np.int32)], (3, 3, 3))return class1 + class2 + class3if __name__ == "__main__":json_dir = "./train_data/labels_json"save_dir = './train_data/masks'for file in os.listdir(json_dir):print('***************', file)if file.endswith(".json"):# 在这里添加后续步骤png = func(os.path.join(json_dir, file))print(png.shape)save_path = save_dir + '/' + os.path.splitext(file)[0] + ".png"cv2.imwrite(save_path, png)print('***************', save_path)
数据集文件夹
datasets|__train_data|__images		# 原图|__1.jpg|__2.jpg|__3.jpg|__masks		# mask图|__1.png|__2.png|__3.png|__test_data|__images|__1.jpg|__2.jpg|__3.jpg|__masks|__1.png|__2.png|__3.png|__my_results_2|__predeict_lables|__predict_masks
训练
# ------- 2. set the directory of training process --------
model_name = 'u2net'  # 'u2net'							# 选择模型
model_dir = os.path.join('saved_models', model_name + os.sep)# 图片的文件类型
image_ext = '.jpg'
label_ext = '.png'# train阶段
# 数据集路径
data_dir = os.path.join("datasets/train_data" + os.sep)
# 原始图片路径
tra_image_dir = os.path.join('images' + os.sep)
# 图片的标签路径
tra_label_dir = os.path.join('masks' + os.sep)# val阶段
# 数据集类别
num_classes = 4			# 背景+类别数
name_classes = ["background", "class1", "class2","class3"]
# 原始图片路径
images_path = "datasets/test_data/images/"
# 图片的标签路径
gt_dir = "datasets/test_data/masks/"
# 存放推理结果图片的路径
pred_dir = "datasets/test_data/predict_masks/"
predict_label = "datasets/test_data/predict_labels/"
# 存放 miou 计算结果的 图片
miou_out_path = "miou_out_tab"
# 预训练权重
seg_pretrain_u2netp_path = 'saved_models/pretrain_model/segm_u2net.pth'
if not os.path.exists(model_dir):os.makedirs(model_dir)epoch_num = 100
batch_size = 2
train_num = 0
val_num = 0
执行u2net_train.py,开始训练
预测
if __name__ == "__main__":#   miou_mode用于指定该文件运行时计算的内容#   miou_mode为0代表整个miou计算流程,包括获得预测结果、计算miou。#   miou_mode为1代表仅仅获得预测结果。#   miou_mode为2代表仅仅计算miou。#   分类个数+1、如2+1# num_classes = 3# name_classes = ["background", "green", "red"]num_classes = 4name_classes =["background", "class1", "class2","class3"]# 原始图片路径images_path = "datasets_ButtonCell/test_data/images/"# 图片的标签路径gt_dir = "datasets_ButtonCell/test_data/masks/"# 存放推理结果图片的路径pred_dir = "datasets_ButtonCell/test_data/predict_masks/"predict_label = "datasets_ButtonCell/test_data/predict_labels/"# 存放 miou 计算结果的 图片miou_out_path = "miou_out"# 模型路径model_dir = './saved_models/u2netp/u2netp.pth'eval_print_miou(num_classes, name_classes, images_path, gt_dir, pred_dir, predict_label, miou_out_path, model_dir)
执行u2net_val.py,开始训练
torch2onnx.py进行模型转换
相关文章:
u2net网络模型训练自己数据集
单分类 下载项目源码 项目源码 准备数据集 将json转为mask json_to_dataset.py import cv2 import json import numpy as np import os import sys import globdef func(file):with open(file, moder, encoding"utf-8") as f:configs json.load(f)shapes configs…...
 
登录功能开发 P167重点
会话技术: cookie jwt令牌会话技术: jwt生成: Claims:jwt中的第二部分 过滤器: 拦截器: 前端无法识别controller方法,因此存在Dispa什么的...
 
数据架构图:从数据源到数据消费的全面展示
在这篇文章中,我们将探讨如何通过架构图来展示数据的整个生命周期,从数据源到数据消费。下面是一个使用Mermaid格式的示例数据架构图,展示了数据从源到消费的流动、处理和存储过程。 数据架构图示例 说明 数据源:分为内部数据源&…...
useEffect 与 useLayoutEffect 的区别
useEffect 与 useLayoutEffect 的区别 useEffect和useLayoutEffect是处理副作用的React钩子函数,有以下区别1. 执行时机不同2. 对性能影响不同3. 对渲染的影响不同:4. 使用场景不同 使用建议 useEffect和useLayoutEffect是处理副作用的React钩子函数&…...
 
OPENCV判断图像中目标物位置及多目标物聚类
文章目录 在最近的项目中,又碰到一个有意思的问题需要通过图像算法来解决。就是显微拍摄的到的医疗图像中,有时候目标物比较偏,也就是在图像的比较偏的位置,需要通过移动样本,将目标物置于视野正中央,然后再…...
分布式理论:拜占庭将军问题
分布式理论:拜占庭将军问题 介绍拜占庭将军的故事将军的难题 解决方案口信消息型拜占庭问题之解流程总结 签名消息型拜占庭问题之解 总结 介绍 拜占庭将军问题是对分布式共识问题的一种情景化描述,由兰伯特于1082首次发表《The Byzantine Generals Prob…...
从零开始Ubuntu24.04上Docker构建自动化部署(三)Docker安装Nginx
安装nginx sudo docker pull nginx 启动nginx 宿主机创建目录 sudo mkdir -p /home/nginx/{conf,conf.d,html,logs} 先启动nginx sudo docker run -d --name mynginx -p 80:80 nginx 宿主机上拷贝docker上nginx服务上文件到本地目录 sudo docker cp mynginx:/etc/nginx/ngin…...
 
阿里云 SAE Web:百毫秒高弹性的实时事件中心的架构和挑战
作者:胡志广(独鳌) 背景 Serverless 应用引擎 SAE 事件中心主要面向早期的 SAE 控制台只有针对于应用维度的事件,这个事件是 K8s 原生的事件,其实绝大多数的用户并不会关心,同时也可能看不懂。而事件中心,是希望能够…...
 
人口普查管理系统基于VUE+SpringBoot+Spring+SpringMVC+MyBatis开发设计与实现
目录 1. 系统概述 2. 系统架构设计 3. 技术实现细节 3.1 前端实现 3.2 后端实现 3.3 数据库设计 4. 安全性设计 5. 效果展示 编辑编辑 6. 测试与部署 7. 示例代码 8. 结论与展望 一个基于 Vue Spring Boot Spring Spring MVC MyBatis 的人口普查管理…...
 
使用VBA快速将文本转换为Word表格
Word提供了一个强大的文本转表格的功能,结合VBA可以实现文本快速转换表格。 示例文档如下所示。 现在需要将上述文档内容转换为如下格式的表格,表格内容的起始标志为。 示例代码如下。 Sub SearchTab()Application.DefaultTableSeparator "*&quo…...
 
力扣题解1870
这道题是一个典型的算法题,涉及计算在限制的时间内列车速度的最小值。这是一个优化问题,通常需要使用二分查找来求解。 题目描述(中等) 准时到达的列车最小时速 给你一个浮点数 hour ,表示你到达办公室可用的总通勤时…...
D3.js数据可视化基础——基于Notepad++、IDEA前端开发
实验:D3.js数据可视化基础 1、实验名称 D3数据可视化基础 2、实验目的 熟悉D3数据可视化的使用方法。 3、实验原理 D3 的全称是(Data-Driven Documents),是一个被数据驱动的文档,其实就是一个 JavaScript 的函数库,使用它主要是用来做数据可视化的。本次实…...
在Robot Framework中Run Keyword If的用法
基本用法使用 ELSE使用 ELSE IF使用内置变量使用Python表达式本文永久更新地址: 在Robot Framework中,Run Keyword If 是一个条件执行的关键字,它允许根据某个条件来决定是否执行某个关键字。下面是 Run Keyword If 的基本用法: Run Keyword…...
 
虚拟机ip突然看不了了
打印大致如下: 解决办法 如果您发现虚拟机的IP地址与主机不在同一网段,可以采取的措施之一是调整网络设置。将虚拟机的网络模式更改为桥接模式,这样它就会获得与主机相同的IP地址,从而处于同一网段。或者,您可以使用…...
 
LeetCode[中等] 763. 划分字母区间
给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。 注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。 返回一个表示每个字符串片段的长度的列表。 思路 贪心…...
Java LeetCode每日一题
997. 找到小镇的法官 package JavaExercise20241002;public class JavaExercise {public static void main(String[] args) {int[][] array {{1,3},{2,3},{3,1}};Solution solution new Solution();System.out.println(solution.findJudge(3, array));} }class Solution {pu…...
数据结构--集合框架
目录 1. 什么是集合框架 2. 背后所涉及的数据结构以及算法 2.1 什么是数据结构 2.2 容器背后对应的数据结构 1. 什么是集合框架 Java 集合框架 Java Collection Framework ,又被称为容器 container ,是定义在 java.util 包下的一组接口 int…...
 
Win10鼠标总是频繁自动失去焦点-非常有效-重启之后立竿见影
针对Win10鼠标频繁自动失去焦点的问题,可以尝试以下解决方案: 一、修改注册表(最有效的方法-重启之后立竿见影) 打开注册表编辑器: 按下WindowsR组合键,打开运行窗口。在运行窗口中输入“regedit”&#x…...
智能涌现|迎接智能时代,算力产业重构未来
前言 OpenAI首席执行官山姆奥特曼在《智能时代》中描绘了一个令人振奋的未来图景,其中算力产业将扮演至关重要的角色。奥特曼预测,我们可能在“几千天内”迎来超级智能,这一进程将极大加速社会结构的智能化转型。 这一预测与算力产业的未来…...
 
关于HTML 案例_个人简历展示01
案例效果展示 代码 <!DOCTYPE html> <lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>个人简历信息</title> </he…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
 
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
 
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
 
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
 
C++实现分布式网络通信框架RPC(2)——rpc发布端
有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
[特殊字符] 手撸 Redis 互斥锁那些坑
📖 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作,想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁,也顺便跟 Redisson 的 RLock 机制对比了下,记录一波,别踩我踩过…...
