u2net网络模型训练自己数据集
单分类
下载项目源码
项目源码
准备数据集
将json转为mask
json_to_dataset.py
import cv2
import json
import numpy as np
import os
import sys
import globdef func(file):with open(file, mode='r', encoding="utf-8") as f:configs = json.load(f)shapes = configs["shapes"]png_class = np.zeros((configs["imageHeight"], configs["imageWidth"], 1), np.uint8)png_other = np.zeros((configs["imageHeight"], configs["imageWidth"], 1), np.uint8)for shape in shapes:label = shape['label']if label == 'class':cv2.fillPoly(png_class, [np.array(shape["points"], np.int32)], (255))else:cv2.fillPoly(png_other, [np.array(shape["points"], np.int32)], (255))png = png_class - png_otherreturn pngif __name__ == "__main__":json_dir = "image"save_dir = 'image/masks'for file in os.listdir(json_dir):print('***************', file)if file.endswith(".json"):# 在这里添加后续步骤png = func(os.path.join(json_dir, file))print(png.shape)save_path = save_dir + '/' + os.path.splitext(file)[0] + ".png"cv2.imwrite(save_path, png)print('***************', save_path)
创建文件路径
train_data|__DUTS|__DUTS-TR|__im_aug # mask图|__gt_aug # 原图|__DUTS-TE|__im_aug # mask图|__gt_aug # 原图
训练
修改u2net_train.py
# ------- 2. set the directory of training dataset --------model_name = 'u2net' #'u2netp' # 选择模型# 修改为对应的数据集路径
data_dir = os.path.join(os.getcwd(), 'train_data' + os.sep)
tra_image_dir = os.path.join('DUTS', 'DUTS-TR', 'im_aug' + os.sep)
tra_label_dir = os.path.join('DUTS', 'DUTS-TR', 'gt_aug' + os.sep)image_ext = '.jpg'
label_ext = '.png'model_dir = os.path.join(os.getcwd(), 'saved_models', model_name + os.sep)
alpha_export.py为转换模型,u2net_test.py模型预测
多分类
准备数据集
将json转为mask,由于是多分类,每一个分类一个rgb值,例如分类1(1,1,1),分类2(2,2,2),分类3(3,3,3);
import cv2
import json
import numpy as np
import os
import sys
import globdef func(file):with open(file, mode='r', encoding="utf-8") as f:configs = json.load(f)shapes = configs["shapes"]class1 = np.zeros((configs["imageHeight"], configs["imageWidth"], 3), np.uint8)class2 = np.zeros((configs["imageHeight"], configs["imageWidth"], 3), np.uint8)class3 = np.zeros((configs["imageHeight"], configs["imageWidth"], 3), np.uint8)for shape in shapes:label = shape['label']if label == 'class1':cv2.fillPoly(class1, [np.array(shape["points"], np.int32)], (1, 1, 1))elif label == 'class2':cv2.fillPoly(class2, [np.array(shape["points"], np.int32)], (2, 2, 2))elif label == 'class3':cv2.fillPoly(class3, [np.array(shape["points"], np.int32)], (3, 3, 3))return class1 + class2 + class3if __name__ == "__main__":json_dir = "./train_data/labels_json"save_dir = './train_data/masks'for file in os.listdir(json_dir):print('***************', file)if file.endswith(".json"):# 在这里添加后续步骤png = func(os.path.join(json_dir, file))print(png.shape)save_path = save_dir + '/' + os.path.splitext(file)[0] + ".png"cv2.imwrite(save_path, png)print('***************', save_path)
数据集文件夹
datasets|__train_data|__images # 原图|__1.jpg|__2.jpg|__3.jpg|__masks # mask图|__1.png|__2.png|__3.png|__test_data|__images|__1.jpg|__2.jpg|__3.jpg|__masks|__1.png|__2.png|__3.png|__my_results_2|__predeict_lables|__predict_masks
训练
# ------- 2. set the directory of training process --------
model_name = 'u2net' # 'u2net' # 选择模型
model_dir = os.path.join('saved_models', model_name + os.sep)# 图片的文件类型
image_ext = '.jpg'
label_ext = '.png'# train阶段
# 数据集路径
data_dir = os.path.join("datasets/train_data" + os.sep)
# 原始图片路径
tra_image_dir = os.path.join('images' + os.sep)
# 图片的标签路径
tra_label_dir = os.path.join('masks' + os.sep)# val阶段
# 数据集类别
num_classes = 4 # 背景+类别数
name_classes = ["background", "class1", "class2","class3"]
# 原始图片路径
images_path = "datasets/test_data/images/"
# 图片的标签路径
gt_dir = "datasets/test_data/masks/"
# 存放推理结果图片的路径
pred_dir = "datasets/test_data/predict_masks/"
predict_label = "datasets/test_data/predict_labels/"
# 存放 miou 计算结果的 图片
miou_out_path = "miou_out_tab"
# 预训练权重
seg_pretrain_u2netp_path = 'saved_models/pretrain_model/segm_u2net.pth'
if not os.path.exists(model_dir):os.makedirs(model_dir)epoch_num = 100
batch_size = 2
train_num = 0
val_num = 0
执行u2net_train.py,开始训练
预测
if __name__ == "__main__":# miou_mode用于指定该文件运行时计算的内容# miou_mode为0代表整个miou计算流程,包括获得预测结果、计算miou。# miou_mode为1代表仅仅获得预测结果。# miou_mode为2代表仅仅计算miou。# 分类个数+1、如2+1# num_classes = 3# name_classes = ["background", "green", "red"]num_classes = 4name_classes =["background", "class1", "class2","class3"]# 原始图片路径images_path = "datasets_ButtonCell/test_data/images/"# 图片的标签路径gt_dir = "datasets_ButtonCell/test_data/masks/"# 存放推理结果图片的路径pred_dir = "datasets_ButtonCell/test_data/predict_masks/"predict_label = "datasets_ButtonCell/test_data/predict_labels/"# 存放 miou 计算结果的 图片miou_out_path = "miou_out"# 模型路径model_dir = './saved_models/u2netp/u2netp.pth'eval_print_miou(num_classes, name_classes, images_path, gt_dir, pred_dir, predict_label, miou_out_path, model_dir)
执行u2net_val.py,开始训练
torch2onnx.py进行模型转换
相关文章:
u2net网络模型训练自己数据集
单分类 下载项目源码 项目源码 准备数据集 将json转为mask json_to_dataset.py import cv2 import json import numpy as np import os import sys import globdef func(file):with open(file, moder, encoding"utf-8") as f:configs json.load(f)shapes configs…...

登录功能开发 P167重点
会话技术: cookie jwt令牌会话技术: jwt生成: Claims:jwt中的第二部分 过滤器: 拦截器: 前端无法识别controller方法,因此存在Dispa什么的...

数据架构图:从数据源到数据消费的全面展示
在这篇文章中,我们将探讨如何通过架构图来展示数据的整个生命周期,从数据源到数据消费。下面是一个使用Mermaid格式的示例数据架构图,展示了数据从源到消费的流动、处理和存储过程。 数据架构图示例 说明 数据源:分为内部数据源&…...
useEffect 与 useLayoutEffect 的区别
useEffect 与 useLayoutEffect 的区别 useEffect和useLayoutEffect是处理副作用的React钩子函数,有以下区别1. 执行时机不同2. 对性能影响不同3. 对渲染的影响不同:4. 使用场景不同 使用建议 useEffect和useLayoutEffect是处理副作用的React钩子函数&…...

OPENCV判断图像中目标物位置及多目标物聚类
文章目录 在最近的项目中,又碰到一个有意思的问题需要通过图像算法来解决。就是显微拍摄的到的医疗图像中,有时候目标物比较偏,也就是在图像的比较偏的位置,需要通过移动样本,将目标物置于视野正中央,然后再…...
分布式理论:拜占庭将军问题
分布式理论:拜占庭将军问题 介绍拜占庭将军的故事将军的难题 解决方案口信消息型拜占庭问题之解流程总结 签名消息型拜占庭问题之解 总结 介绍 拜占庭将军问题是对分布式共识问题的一种情景化描述,由兰伯特于1082首次发表《The Byzantine Generals Prob…...
从零开始Ubuntu24.04上Docker构建自动化部署(三)Docker安装Nginx
安装nginx sudo docker pull nginx 启动nginx 宿主机创建目录 sudo mkdir -p /home/nginx/{conf,conf.d,html,logs} 先启动nginx sudo docker run -d --name mynginx -p 80:80 nginx 宿主机上拷贝docker上nginx服务上文件到本地目录 sudo docker cp mynginx:/etc/nginx/ngin…...

阿里云 SAE Web:百毫秒高弹性的实时事件中心的架构和挑战
作者:胡志广(独鳌) 背景 Serverless 应用引擎 SAE 事件中心主要面向早期的 SAE 控制台只有针对于应用维度的事件,这个事件是 K8s 原生的事件,其实绝大多数的用户并不会关心,同时也可能看不懂。而事件中心,是希望能够…...

人口普查管理系统基于VUE+SpringBoot+Spring+SpringMVC+MyBatis开发设计与实现
目录 1. 系统概述 2. 系统架构设计 3. 技术实现细节 3.1 前端实现 3.2 后端实现 3.3 数据库设计 4. 安全性设计 5. 效果展示 编辑编辑 6. 测试与部署 7. 示例代码 8. 结论与展望 一个基于 Vue Spring Boot Spring Spring MVC MyBatis 的人口普查管理…...

使用VBA快速将文本转换为Word表格
Word提供了一个强大的文本转表格的功能,结合VBA可以实现文本快速转换表格。 示例文档如下所示。 现在需要将上述文档内容转换为如下格式的表格,表格内容的起始标志为。 示例代码如下。 Sub SearchTab()Application.DefaultTableSeparator "*&quo…...

力扣题解1870
这道题是一个典型的算法题,涉及计算在限制的时间内列车速度的最小值。这是一个优化问题,通常需要使用二分查找来求解。 题目描述(中等) 准时到达的列车最小时速 给你一个浮点数 hour ,表示你到达办公室可用的总通勤时…...
D3.js数据可视化基础——基于Notepad++、IDEA前端开发
实验:D3.js数据可视化基础 1、实验名称 D3数据可视化基础 2、实验目的 熟悉D3数据可视化的使用方法。 3、实验原理 D3 的全称是(Data-Driven Documents),是一个被数据驱动的文档,其实就是一个 JavaScript 的函数库,使用它主要是用来做数据可视化的。本次实…...
在Robot Framework中Run Keyword If的用法
基本用法使用 ELSE使用 ELSE IF使用内置变量使用Python表达式本文永久更新地址: 在Robot Framework中,Run Keyword If 是一个条件执行的关键字,它允许根据某个条件来决定是否执行某个关键字。下面是 Run Keyword If 的基本用法: Run Keyword…...

虚拟机ip突然看不了了
打印大致如下: 解决办法 如果您发现虚拟机的IP地址与主机不在同一网段,可以采取的措施之一是调整网络设置。将虚拟机的网络模式更改为桥接模式,这样它就会获得与主机相同的IP地址,从而处于同一网段。或者,您可以使用…...

LeetCode[中等] 763. 划分字母区间
给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。 注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。 返回一个表示每个字符串片段的长度的列表。 思路 贪心…...
Java LeetCode每日一题
997. 找到小镇的法官 package JavaExercise20241002;public class JavaExercise {public static void main(String[] args) {int[][] array {{1,3},{2,3},{3,1}};Solution solution new Solution();System.out.println(solution.findJudge(3, array));} }class Solution {pu…...
数据结构--集合框架
目录 1. 什么是集合框架 2. 背后所涉及的数据结构以及算法 2.1 什么是数据结构 2.2 容器背后对应的数据结构 1. 什么是集合框架 Java 集合框架 Java Collection Framework ,又被称为容器 container ,是定义在 java.util 包下的一组接口 int…...

Win10鼠标总是频繁自动失去焦点-非常有效-重启之后立竿见影
针对Win10鼠标频繁自动失去焦点的问题,可以尝试以下解决方案: 一、修改注册表(最有效的方法-重启之后立竿见影) 打开注册表编辑器: 按下WindowsR组合键,打开运行窗口。在运行窗口中输入“regedit”&#x…...
智能涌现|迎接智能时代,算力产业重构未来
前言 OpenAI首席执行官山姆奥特曼在《智能时代》中描绘了一个令人振奋的未来图景,其中算力产业将扮演至关重要的角色。奥特曼预测,我们可能在“几千天内”迎来超级智能,这一进程将极大加速社会结构的智能化转型。 这一预测与算力产业的未来…...

关于HTML 案例_个人简历展示01
案例效果展示 代码 <!DOCTYPE html> <lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>个人简历信息</title> </he…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...

相关类相关的可视化图像总结
目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系,可直观判断线性相关、非线性相关或无相关关系,点的分布密…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析
LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...

虚拟机网络不通的问题(这里以win10的问题为主,模式NAT)
当我们网关配置好了,DNS也配置好了,最后在虚拟机里还是无法访问百度的网址。 第一种情况: 我们先考虑一下,网关的IP是否和虚拟机编辑器里的IP一样不,如果不一样需要更改一下,因为我们访问百度需要从物理机…...
Python网页自动化测试,DrissonPage库入门说明文档
🛰️ 基本逻辑 操作浏览器的基本逻辑如下: 创建浏览器对象,用于启动或接管浏览器获取一个 Tab 对象使用 Tab 对象访问网址使用 Tab 对象获取标签页内需要的元素对象使用元素对象进行交互 除此以外,还能执行更为复杂的操作&am…...
后端解决跨域问题的三种方案:注解配置 vs 全局配置 vs 过滤器配置(附完整代码详解)
文章目录 一、引言:跨域问题的本质与解决方案分类解决方案分类二、方案一:`WebMvcConfigurer` 全局配置(推荐)1. 核心代码(你提供的 `CorsConfig` 示例)2. 代码详解3. 优点4. 注意事项三、方案二:`CorsFilter` 过滤器配置(传统方式)1. 核心代码(你提供的 `ResourcesC…...