当前位置: 首页 > news >正文

信息学奥赛一本通 2087:【22CSPJ普及组】解密(decode) | 洛谷 P8814 [CSP-J 2022] 解密

【题目链接】

洛谷 P8814 [CSP-J 2022] 解密
ybt 2087:【22CSPJ普及组】解密(decode)

【题目考点】

1. 数学:一元二次方程求根

【解题思路】

输入n,d,e,满足
n = p ∗ q n=p*q n=pq
e ∗ d = ( p − 1 ) ( q − 1 ) + 1 e*d=(p-1)(q-1)+1 ed=(p1)(q1)+1
= p ∗ q − p − q + 2 = n − p − q + 2 =p*q-p-q+2=n-p-q+2 =pqpq+2=npq+2
所以 p + q = n − e ∗ d + 2 p+q=n-e*d+2 p+q=ned+2

解法1:枚举(60分)

因此是一个二元方程组求解的问题
p ∗ q = n p*q=n pq=n
p + q = n − e ∗ d + 2 p+q=n-e*d+2 p+q=ned+2
使用枚举算法,求方程组的解,在输入数据较小时可以得到解。
该代码得分:60分。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main()
{ios::sync_with_stdio(false);cin.tie(nullptr);LL k, n, d, e;cin >> k;while(k--){cin >> n >> d >> e;bool hasAns = false;for(LL p = 1; p*p <= n; ++p) if(n%p == 0){LL q = n/p;if(p+q == n-e*d+2){cout << p << ' ' << q << '\n';hasAns = true;break;}}if(!hasAns)cout << "NO" << '\n';}return 0;
}
解法2:一元二次方程求根

已知
p ∗ q = n p*q=n pq=n
p + q = n − e ∗ d + 2 p+q=n-e*d+2 p+q=ned+2
p + q = n − e ∗ d + 2 p+q=n-e*d+2 p+q=ned+2两边乘以p,得:
p 2 + p ∗ q = p ( n − e ∗ d + 2 ) p^2+p*q=p(n-e*d+2) p2+pq=p(ned+2)
p 2 + ( e ∗ d − n − 2 ) p + n = 0 p^2+(e*d-n-2)p+n = 0 p2+(edn2)p+n=0
p + q = n − e ∗ d + 2 p+q=n-e*d+2 p+q=ned+2两边乘以q,得:
q 2 + p ∗ q = q ( n − e ∗ d + 2 ) q^2+p*q=q(n-e*d+2) q2+pq=q(ned+2)
q 2 + ( e ∗ d − n − 2 ) q + n = 0 q^2+(e*d-n-2)q+n = 0 q2+(edn2)q+n=0
显然p、q是一元二次方程 x 2 + ( e ∗ d − n − 2 ) x + n = 0 x^2+(e*d-n-2)x+n=0 x2+(edn2)x+n=0的两个根。
已知一元二次方程两根分别为 − b ± b 2 − 4 a c 2 a \frac{-b \pm\sqrt{b^2-4ac}}{2a} 2ab±b24ac
该方程中 a = 1 , b = e ∗ d − n − 2 , c = n a = 1, b = e*d-n-2, c = n a=1,b=edn2,c=n
因此,两根p、q为 − b ± b 2 − 4 c -b \pm\sqrt{b^2-4c} b±b24c
由于p、q都是正整数,那么首先 b 2 − 4 c b^2-4c b24c必须是完全平方数,开方后是一个正整数。同时 − b ± b 2 − 4 c -b \pm\sqrt{b^2-4c} b±b24c 都必须大于0。
将满足该条件的 − b ± b 2 − 4 c -b \pm\sqrt{b^2-4c} b±b24c 输出,先输出较小的根 − b − b 2 − 4 c -b -\sqrt{b^2-4c} bb24c ,再输出较大的跟 − b + b 2 − 4 c -b +\sqrt{b^2-4c} b+b24c

【题解代码】

解法2:一元二次方程求根
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main()
{ios::sync_with_stdio(false);cin.tie(nullptr);LL k, n, d, e, delta, b, c, p, q, sq;cin >> k;for(int i = 1; i <= k; ++i){cin >> n >> d >> e;b = -n+e*d-2;c = n;delta = b*b-4*c;sq = sqrt(delta);if(sq*sq == delta)//delta是完全平方数 {p = (-b-sq)/2, q = (-b+sq)/2;if(p > 0 && q > 0)cout << p << ' ' << q << '\n';elsecout << "NO\n";}elsecout << "NO\n";}return 0;
}

相关文章:

信息学奥赛一本通 2087:【22CSPJ普及组】解密(decode) | 洛谷 P8814 [CSP-J 2022] 解密

【题目链接】 洛谷 P8814 [CSP-J 2022] 解密 ybt 2087&#xff1a;【22CSPJ普及组】解密(decode) 【题目考点】 1. 数学&#xff1a;一元二次方程求根 【解题思路】 输入n&#xff0c;d&#xff0c;e&#xff0c;满足 n p ∗ q np*q np∗q e ∗ d ( p − 1 ) ( q − 1…...

【重学 MySQL】四十八、DCL 中的 commit 和 rollback

【重学 MySQL】四十八、DCL 中的 commit 和 rollback commit的定义与作用rollback的定义与作用使用场景相关示例注意事项DDL 和 DML 的说明 在MySQL中&#xff0c;DCL&#xff08;Data Control Language&#xff0c;数据控制语言&#xff09;用于管理数据库用户和控制数据的访问…...

Java面试八股之认证授权

一、概念&#xff1a; 1、什么是认证&#xff1f;什么是授权&#xff1f; 认证 用于在系统登录时&#xff0c;验证身份的凭证&#xff0c;类似于账号、密码等。 授权 用户在访问资源时&#xff0c;根据权限的不同对资源访问程度不同。 2、什么是cookie&#xff1f;什么是…...

RCE_绕过综合

<aside> &#x1f4a1; 管道符 </aside> <aside> &#x1f4a1; 通配符绕过 </aside> **匹配任何字符串&#xff0f;文本&#xff0c;包括空字符串&#xff1b;*代表任意字符&#xff08;0个或多个&#xff09;? 匹配任何一个字符&#xff08;不…...

关于Generator,async 和 await的介绍

在本篇文章中我们主要围绕下面几个问题来介绍async 和await &#x1f370;Generator的作用&#xff0c;async 及 await 的特点&#xff0c;它们的优点和缺点分别是什么&#xff1f;await 原理是什么&#xff1f; &#x1f4c5;我的感受是我们先来了解Generator&#xff0c;在去…...

Redis数据库与GO(二):list,set

一、list&#xff08;列表&#xff09; list&#xff08;列表&#xff09;是简单的字符串列表&#xff0c;按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)。List本质是个链表&#xff0c; list是一个双向链表&#xff0c;其元素是有序的&#xff0c;元…...

c++知识点总结

1.把字符串a复制到b里面 #include<iostream> #include<string.h> using namespace std; int main() {char a[110],b[110];cin>>a;int n strlen(a);for(int i 0;i<n1;i){b[i] a[i];}cout<<b;return 0; }2.比较两个字符串的大小 如果a大返回1&…...

无IDEA不Java:快速掌握Java集成开发环境

IntelliJ IDEA是一种强大的Java集成开发环境&#xff0c;是Java开发人员的首选工具之一。本文将介绍IDEA的基本使用方法和常用功能&#xff0c;以帮助初学者快速上手。 安装和配置 首先&#xff0c;需要下载并安装IntelliJ IDEA。在安装完成后&#xff0c;需要配置JDK&#xff…...

9.30学习记录(补)

手撕线程池: 1.进程:进程就是运行中的程序 2.线程的最大数量取决于CPU的核数 3.创建线程 thread t1; 在使用多线程时&#xff0c;由于线程是由上至下走的&#xff0c;所以主程序要等待线程全部执行完才能结束否则就会发生报错。通过thread.join()来实现 但是如果在一个比…...

移动应用中提升用户体验的因素

用户体验&#xff08;UX&#xff09;是任何移动应用程序成功的关键因素。随着数以百万计的应用程序争夺注意力&#xff0c;提供无缝、愉快和高效的体验可能是获得忠实用户或在一次互动后失去忠实用户之间的区别。无论是商业应用程序、游戏还是社交平台&#xff0c;增强用户体验…...

VS与VSCode的区别

文章目录 1. 什么是 Visual Studio 和 Visual Studio Code&#xff1f;Visual Studio&#xff08;VS&#xff09;Visual Studio Code&#xff08;VS Code&#xff09; 2. 主要区别详解性能和资源占用功能和复杂性扩展和自定义适用场景价格 3. 详细对比总结4. 如何选择适合自己的…...

用Python和OpenCV实现人脸识别:构建智能识别系统

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 人脸识别技术在现代社会的各个领域得到了广泛应用,从智能手机的面部解锁到公共场所的安全监控,人脸识别已经成为一项日益重要的技术。本教程将指导你使用Python中的OpenCV库来构建一个简单的人脸检测与识别系统…...

微积分-反函数6.5(指数增长和衰减)

在许多自然现象中&#xff0c;数量的增长或衰减与其大小成正比。例如&#xff0c;如果 y f ( t ) y f(t) yf(t) 表示在时间 t t t 时某种动物或细菌种群的个体数量&#xff0c;那么似乎可以合理地假设增长速率 f ’ ( t ) f’(t) f’(t) 与种群 f ( t ) f(t) f(t) 成正比…...

C初阶(十二)do - while循环 --- 致敬革命烈士

大家国庆看阅兵仪式和天安门升旗仪式了吗&#xff1f;岁月安好&#xff0c;只因有人负重前行。 ————山那边是什么 ————是烈士的英魄 ————是他们拼死保卫的新中国 ————河那边是什么 ————是绵延的战火 ————她望着远方泪一滴滴的落 ————和平来了 ——…...

从零开始:SpringBoot实现古典舞在线交流平台

第二章 相关技术介绍 2.1Java技术 Java是一种非常常用的编程语言&#xff0c;在全球编程语言排行版上总是前三。在方兴未艾的计算机技术发展历程中&#xff0c;Java的身影无处不在&#xff0c;并且拥有旺盛的生命力。Java的跨平台能力十分强大&#xff0c;只需一次编译&#xf…...

AL生成文章标题指定路径保存:创新工具助力内容创作高效启航

在信息爆炸的时代&#xff0c;一个吸引人的标题是文章成功的第一步。它不仅要准确概括文章内容&#xff0c;还要能激发读者的好奇心&#xff0c;促使他们点击阅读。随着人工智能技术的飞速发展&#xff0c;AL生成文章标题功能正逐渐成为内容创作者的新宠&#xff0c;看看它是如…...

java基础知识汇总

以下内容是学习《java核心技术卷1》的学习笔记 一、一个简单的java应用程序 public class App { public static void main(String[] args) { System.out.println("yuanyexiaolu"); } } 代码解释&#xff1a; 关键字public称为访问修饰符&#xff0c;这些修饰…...

2.点位管理|前后端如何交互——帝可得后台管理系统

目录 前言点位管理菜单模块1.需求说明2.库表设计3.生成基础代码0 .使用若依代码生成器最终目标1.创建点位管理2.添加数据字典3.配置代码生成信息4.下载代码并导入项目 4.优化菜单——点位管理1.优化区域管理2.增加点位数3. 合作商4.区域管理中添加查看详情功能5.合作商添加点位…...

Redis基础二(spring整合redis)

Springboot整合Redis 一、Springboot整合redis ​ redis可以通过使用java代码来实现 第一部分文档中 在终端操作redis的所有命令&#xff0c;Spring已经帮我们封装了所有的操作&#xff0c;所以变得很简单了。 ​ Spring专门提供了一个模块来进行这些操作的封装&#xff0c;这…...

JAVA开源项目 教学资源库系统 计算机毕业设计

本文项目编号 T 067 &#xff0c;文末自助获取源码 \color{red}{T067&#xff0c;文末自助获取源码} T067&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析5.4 用例设计5.4.1 管…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7

在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤&#xff1a; 第一步&#xff1a; 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为&#xff1a; // 改为 v…...