基于SpringBoot+Vue的高校运动会管理系统
作者:计算机学姐
开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码
精品专栏:Java精选实战项目源码、Python精选实战项目源码、大数据精选实战项目源码

系统展示
【2025最新】基于Java+SpringBoot+Vue+MySQL的高校运动会管理系统,前后端分离。
- 开发语言:Java
- 数据库:MySQL
- 技术:SpringBoot、Vue、Mybaits Plus、ELementUI
- 工具:IDEA/Ecilpse、Navicat、Maven
前台界面



后台界面



摘要
基于SpringBoot+Vue的高校运动会管理系统旨在提升学校运动会管理的效率和准确性。该系统集成了用户管理、运动项目设置、项目报名、项目分类及运动成绩管理等功能,通过信息化手段优化运动会管理流程。系统采用SpringBoot作为后端框架,Vue.js作为前端框架,MySQL作为数据库管理系统,实现了运动会管理的全面数字化与智能化。系统不仅能够减少人工管理带来的繁琐和错误,还能提供丰富的数据分析功能,为体育赛事的科学规划和决策提供数据支持。
研究意义
本研究的意义在于通过开发高校运动会管理系统,提升运动会组织的效率与准确性,减少人为错误,确保数据的及时性和准确性。系统能够增强师生参与运动会的便捷性和积极性,提升用户体验。同时,系统支持的项目分类和成绩管理功能有助于学校更好地掌握学生体质健康状况,为体育教学和课外活动的科学规划提供数据支持。此外,该系统的研发还促进了信息技术与教育管理的深度融合,为教育信息化进程贡献了一份力量。
研究目的
本研究的主要目的是设计并实现一套符合高校实际需求的运动会管理系统,实现运动会管理的流程化、标准化与智能化。系统需具备运动员信息管理、竞赛类型与信息管理、竞赛报名与取消、竞赛成绩记录与查询、裁判员管理、赛程信息发布与调整等核心功能。通过该系统,提升管理效率,保障比赛公正公平,促进校园体育活动的健康有序发展。同时,为高校体育赛事管理模式的创新与发展提供新思路与新方法。
文档目录
1.绪论
1.1 研究背景
1.2 研究意义
1.3 研究现状
1.4 研究内容
2.相关技术
2.1 Java语言
2.2 B/S架构
2.3 MySQL数据库
2.4 SpringBoot框架
2.5 Vue框架
3.系统分析
3.1 系统可行性分析
3.1.1 技术可行性分析
3.1.2 经济可行性分析
3.1.3 操作可行性分析
3.2 系统性能分析
3.2.1 易用性指标
3.2.2 可扩展性指标
3.2.3 健壮性指标
3.2.4 安全性指标
3.3 系统流程分析
3.3.1 操作流程分析
3.3.2 登录流程分析
3.3.3 信息添加流程分析
3.3.4 信息删除流程分析
3.4 系统功能分析
4.系统设计
4.1 系统概要设计
4.2 系统功能结构设计
4.3 数据库设计
4.3.1 数据库E-R图设计
4.3.2 数据库表结构设计
5.系统实现
5.1 前台功能实现
5.2 后台功能实现
6.系统测试
6.1 测试目的及方法
6.2 系统功能测试
6.2.1 登录功能测试
6.2.2 添加功能测试
6.2.3 删除功能测试
6.3 测试结果分析
代码
@PostMapping("login")
public Map<String, Object> login(@RequestBody Map<String, String> data, HttpServletRequest httpServletRequest) { log.info("[执行登录接口]"); String username = data.get("username"); String password = data.get("password"); List<User> resultList = null; QueryWrapper<User> wrapper = new QueryWrapper<>(); Map<String, String> map = new HashMap<>(); if (username != null && !"".equals(username)) { map.put("username", username); resultList = userService.selectList(wrapper.allEq(map)); } if (resultList == null || resultList.size() <= 0 || !resultList.get(0).getPassword().equals(password)) { return error(30000, "账号或密码不正确"); } User user = resultList.get(0); return success(user);
}
总结
本研究成功开发了一套基于SpringBoot+Vue的高校运动会管理系统,实现了运动会管理的全面数字化与智能化。系统在实际应用中取得了显著效果,不仅提升了运动会组织的效率与准确性,还增强了师生参与运动会的便捷性和积极性。通过系统的数据分析功能,学校能够更好地掌握学生体质健康状况,为体育教学和课外活动的科学规划提供有力支持。本研究为高校体育赛事管理模式的创新与发展提供了新思路与新方法,具有较高的实际应用价值和推广意义。
获取源码
一键三连噢~
相关文章:
基于SpringBoot+Vue的高校运动会管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…...
什么东西可以当做GC Root,跨代引用如何处理?
引言 在Java的垃圾回收机制中,GC Root(Garbage Collection Root,垃圾回收根)是垃圾回收器判断哪些对象是可达的,哪些对象可以被回收的起点。GC Root通过遍历对象图,标记所有可达的对象,而那些不…...
Python深度学习:从神经网络到循环神经网络
Python深度学习:从神经网络到循环神经网络 目录 ✨ 神经网络基础 1.1 🔍 前向传播与反向传播🎨 卷积神经网络(CNN) 2.1 🖼️ 图像分类任务的实现 2.2 🚀 常用架构(LeNet、VGG、Res…...
C++输⼊输出
1.<iostream> 是 Input Output Stream 的缩写,是标准的输⼊、输出流库,定义了标准的输⼊、输 出对象 2.std::cin 是 istream 类的对象,它主要⾯向窄字符(narrow characters (of type char))的标准输 ⼊流。 3…...
卡码网KamaCoder 117. 软件构建
题目来源:117. 软件构建 C题解(来源代码随想录):拓扑排序:给出一个 有向图,把这个有向图转成线性的排序。拓扑排序也是图论中判断有向无环图的常用方法。 拓扑排序的过程,其实就两步࿱…...
Acwing 线性DP
状态转移方程呈现出一种线性的递推形式的DP,我们将其称为线性DP。 Acwing 898.数字三角形 实现思路: 对这个三角形的数字进行编号,状态表示依然可以用二维表示,即f(i,j),i表示横坐标(横线),j表…...
Docker面试-24年
1、Docker 是什么? Docker一个开源的应用容器引擎,是实现容器技术的一种工具,让开发者可以打包他们的应用以及环境到一个镜像中,可以快速的发布到任何流行的操作系统上。 2、Docker的三大核心是什么? 镜像:Docker的…...
ubuntu 安装k8s
#关闭 Swap 内存,配置完成建议重启一下 nano /etc/fstab #注释下面相似的一行 #/swapfile none swap sw 0 0 #重启 reboot#部属k8s apt update && apt install -y apt-transport-https 下载 gpg 密钥 curl https://mi…...
No.4 笔记 | 探索网络安全:揭开Web世界的隐秘防线
在这个数字时代,网络安全无处不在。了解Web安全的基本知识,不仅能保护我们自己,也能帮助我们在技术上更进一步。让我们一起深入探索Web安全的世界,掌握那些必备的安全知识! 1. 客户端与WEB应用安全 前端漏洞࿱…...
spring揭秘24-springmvc02-5个重要组件
文章目录 【README】【1】HanderMapping-处理器映射容器【1.1】HanderMapping实现类【1.1.1】SimpleUrlHandlerMapping 【2】Controller(二级控制器)【2.1】AbstractController抽象控制器(控制器基类) 【3】ModelAndView(模型与视…...
关键字:register
1.铺垫 1.1 计算集中具有存储能力的硬件:cpu中的寄存器、cache,内存,硬盘等 1.2离cpu越近的存储硬件,效率越高,单价成本越贵;离cpu越远的存储硬件,效率越低,单价成本越便宜&#x…...
力扣 简单 110.平衡二叉树
文章目录 题目介绍解法 题目介绍 解法 平衡二叉树:任意节点的左子树和右子树的高度之差的绝对值不超过 1 //利用递归方法自顶向下判断以每个节点为根节点的左右子树的最大深度是否大于1 class Solution {public boolean isBalanced(TreeNode root) {if(root null){return tr…...
基于深度学习的代码优化
基于深度学习的代码优化是一种使用深度学习技术来提升编程代码性能、减少运行时间或资源消耗的方式。通过模型学习大量代码的特征和结构,深度学习可以帮助自动化地识别和应用优化策略。以下是一些关键应用领域: 编译器优化:深度学习模型可以用…...
汽车电气系统中KL30、KL15、KL50、KLR、KL31、KL87、KL75的作用
目录 1、KL30 (Battery Positive Terminal) 2、KL15 (Ignition Switch, Positive) 3、KL50 (Starter Motor Terminal) 4、KLR (Ignition-Off Draw) 5、KL31 (Ground) 6、KL87 (Relay Output) 7、KL75 (Accessory) 在汽车电气系统中,KL系列的术语起源于德国&a…...
随笔(四)——代码优化
文章目录 前言1.原本代码2.新增逻辑3.优化逻辑 前言 原逻辑:后端data数据中返回数组,数组中有两个对象,一个是属性指标,一个是应用指标,根据这两个指标展示不同的多选框 1.原本代码 getIndicatorRange(indexReportLi…...
安装管理K8S的开源项目KubeClipper介绍
安装管理K8S的开源项目KubeClipper介绍 1. 概述 KubeClipper是九州云开源的一个图形化界面 Kubernetes 多集群管理工具,旨在提供易使用、易运维、极轻量、生产级的 Kubernetes 多集群全生命周期管理服务。让运维工程师从繁复的配置和晦涩的命令行中解放出来&#…...
北交大研究突破:塑料光纤赋能低成本无摄像头AR/VR眼动追踪技术
北交大研究:探索无摄像头低成本AR/VR眼动追踪新路径 在AR/VR技术领域,眼动追踪作为一项关键技术,对于提升用户体验、优化渲染效率具有重要意义。然而,传统的眼动追踪方案多依赖于高成本的摄像头,这不仅增加了设备的制造…...
算法题总结(七)——哈希表
当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法 242、有效地字母异位词 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。 注意:若 s 和 t 中每个字符出现的次数都相同,则称 s 和 t…...
PS批量执行动作,ps批量修改图片大小,并修改文件的类型
PS批量执行动作,ps批量修改图片大小,并修改文件的类型 修改格式,文件类型为:jpg,psd,tiff,并修改大小 打开文件(也可以不打开,) 点击文件>脚本>文件…...
CentOS 替换 yum源 经验分享
视频教程在bilibili:CentOS 替换 yum源 经验分享_哔哩哔哩_bilibili问题原因 解决方法 1. 进入镜像目录 [rootlocalhost ~]# cd /etc/yum.repos.d/ 2.备份文件 [rootlocalhost yum.repos.d]# rename repo bak * 3.寻找阿里镜像源复制 https://developer.aliyun.com/mirror/ …...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
