当前位置: 首页 > news >正文

OpenCV-背景建模

文章目录

  • 一、背景建模的目的
  • 二、背景建模的方法及原理
  • 三、背景建模实现
  • 四、总结

OpenCV中的背景建模是一种在计算机视觉中从视频序列中提取出静态背景的技术。以下是对OpenCV背景建模的详细解释:

一、背景建模的目的

背景建模的主要目标是将动态的前景对象与静态的背景进行分离,以便进一步分析和处理。这在许多应用场景中都非常重要,如运动检测(识别并提取视频中的运动对象)、场景理解(帮助计算机理解视频中的不同场景和物体)以及事件检测(监测特定事件或行为,如入侵检测、交通监控等)。

二、背景建模的方法及原理

帧差法:

  • 原理:对时间上连续的两帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值。当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。
  • 优点:算法简单,易于实现。
  • 缺点:会引入噪音和空洞问题,对光线变化敏感。

混合高斯模型(Gaussian Mixture Model, GMM):

  • 原理:混合高斯模型是一种统计模型,用于表示具有多个峰值的数据分布。它由多个高斯分布(也称为正态分布)组合而成,每个高斯分布被称为一个组分。在背景建模中,每个像素点都用多个高斯分布进行建模,形成高斯混合模型。对于每个像素点,根据当前输入值与模型中每个高斯分布的相似度进行匹配。若当前值与某个高斯分布相似,则更新该分布的均值和方差;否则,引入新的高斯分布。通过设定阈值确定哪些像素被视为前景。
  • 优点:对动态背景有一定的鲁棒性,能够适应背景的变化。
  • 缺点:计算量相对较大,需要消耗一定的计算资源。

三、背景建模实现

在OpenCV中,可以使用createBackgroundSubtractorMOG2()函数来创建混合高斯模型背景减除器,实现背景建模。以下是一个简单的代码示例:

import cv2  # 加载视频文件  
cap = cv2.VideoCapture('test.avi')  # 创建混合高斯模型背景减除器  
fgbg = cv2.createBackgroundSubtractorMOG2()  # 形态学操作需要使用的卷积核  
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))  while True:  ret, frame = cap.read()  if not ret:  break  # 应用背景减除器  fgmask = fgbg.apply(frame)  # 形态学开运算去噪点  fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)  # 查找视频中的轮廓  contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  for c in contours:  # 计算各轮廓的周长  perimeter = cv2.arcLength(c, True)  if perimeter > 188:  # 设定一个阈值来判断是否为感兴趣的对象  # 找到一个直矩形(不会旋转)  x, y, w, h = cv2.boundingRect(c)  # 画出这个矩形  cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)  # 显示结果  cv2.imshow('frame', frame)  cv2.imshow('fgmask', fgmask)  # 按键退出  k = cv2.waitKey(150) & 0xff  if k == 27:  # 按下Esc键退出  break  # 释放资源  
cap.release()  
cv2.destroyAllWindows()

在这个示例中,我们首先加载了一个视频文件,并创建了混合高斯模型背景减除器。然后,我们遍历视频的每一帧,对每一帧应用背景减除器,得到前景掩码。接着,我们对前景掩码进行形态学开运算去噪点,并查找视频中的轮廓。最后,我们计算每个轮廓的周长,并根据周长大小判断是否为感兴趣的对象(如行人),并在原图上绘制出这些对象的矩形框。

四、总结

OpenCV中的背景建模技术是实现运动检测、场景理解和事件检测等应用的重要基础。通过选择合适的背景建模方法(如混合高斯模型)和相应的实现函数(如createBackgroundSubtractorMOG2()),我们可以有效地从视频序列中提取出静态背景,并将动态前景对象与背景进行分离。这为后续的进一步分析和处理提供了便利。

相关文章:

OpenCV-背景建模

文章目录 一、背景建模的目的二、背景建模的方法及原理三、背景建模实现四、总结 OpenCV中的背景建模是一种在计算机视觉中从视频序列中提取出静态背景的技术。以下是对OpenCV背景建模的详细解释: 一、背景建模的目的 背景建模的主要目标是将动态的前景对象与静态的…...

一个简单的摄像头应用程序6

主要改进点: 使用 ThreadPoolExecutor 管理多线程: 使用 concurrent.futures.ThreadPoolExecutor 来管理多线程,这样可以更高效地处理图像。 在 main 函数中创建一个 ThreadPoolExecutor,并在每个循环中提交图像处理任务。 减少…...

Pikachu-目录遍历

目录遍历,跟不安全文件上传下载有差不多; 访问 jarheads.php 、truman.php 都是通过 get 请求,往title 参数传参; 在后台,可以看到 jarheads.php 、truman.php所在目录: /var/www/html/vul/dir/soup 图片…...

用Python实现基于Flask的简单Web应用:从零开始构建个人博客

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 前言 在现代Web开发中,Python因其简洁、易用以及丰富的库生态系统,成为了许多开发者的首选编程语言。Flask作为一个轻量级的Python Web框架,以其简洁和灵活性深受开…...

IDEA的lombok插件不生效了?!!

记录一下,防止找不到解决方案,已经遇到好几次了 前面啰嗦的多,可以直接跳到末尾的解决方法,点击一下 问题现场情况 排查过程 确认引入的依赖正常 —》🆗 idea 是否安装了lombok插件 --》🆗 貌似没有问题…...

CSP-S 2022 T1假期计划

CSP-S 2022 T1假期计划 先思考暴力做法,题目需要找到四个不相同的景点,那我们就枚举这四个景点,判断它们之间的距离是否符合条件,条件是任意两个点之间的距离是否大于 k k k,所以我们需要求出任意两点之间的距离。常用…...

为什么要学习大模型?AI在把传统软件当早餐吃掉?

前言 上周末在推特平台上有一篇写在谷歌文档里的短文,在国外的科技/投资圈得到了非常广泛的浏览,叫做 The End of Software(软件的终结), 作者 Chris Paik 是位于纽约市的风险投资基金 Pace Capital 的创始合伙人&…...

全流程Python编程、机器学习与深度学习实践技术应用

近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其…...

pWnos1.0 靶机渗透 (Perl CGI 的反弹 shell 利用)

靶机介绍 来自 vulnhub 主机发现 ┌──(kali㉿kali)-[~/testPwnos1.0] …...

jquery on() 函数绑定无效

on 前面的元素必须在页面加载的时候就存在于 dom 里面。动态的元素或者样式等&#xff0c;可以放在 on 的第二个参数里面。jQuery on() 方法是官方推荐的绑定事件的一个方法。使用 on() 方法可以给将来动态创建的动态元素绑定指定的事件&#xff0c;例如 append 等。 <div …...

数字化转型与企业创新的双向驱动

数字化转型与企业创新的双向驱动 在全球化的竞争环境中&#xff0c;数字化转型已成为企业保持竞争力的重要手段。未来几年&#xff0c;随着信息技术的进一步发展&#xff0c;数字化转型将不仅限于IT部门&#xff0c;而是深入到企业的各个业务层面&#xff0c;推动创新和效率的…...

[uni-app]小兔鲜-07订单+支付

订单模块 基本信息渲染 import type { OrderState } from /services/constants import type { AddressItem } from ./address import type { PageParams } from /types/global/** 获取预付订单 返回信息 */ export type OrderPreResult {/** 商品集合 [ 商品信息 ] */goods: …...

Oracle数据库中表压缩的实现方式和特点

Oracle数据库中表压缩的实现方式和特点 在 Oracle 数据库中&#xff0c;表压缩是一项重要的功能&#xff0c;旨在优化存储空间和提高性能。Oracle 提供了多种表压缩技术&#xff0c;以适应不同的应用场景和需求。以下是 Oracle 数据库中表压缩的实现方式和特点&#xff1a; 1…...

【C语言】基础篇

简单输出“helloword” #include<stdio.h> int main(){printf("hello world!");return 0; } 和与商 #include<stdio.h> int main(){int a,b,sum,quotient;printf("Enter two numbers:");scanf("%d %d",&a,&b);sum a b…...

Meta MovieGen AI:颠覆性的文本生成视频技术详解

近年来&#xff0c;生成式AI技术的发展迅猛&#xff0c;尤其是在文本生成图像、文本生成视频等领域。Meta公司近期推出的MovieGen AI&#xff0c;以其强大的文本生成视频能力震撼了整个AI行业。本文将详细解读Meta MovieGen AI的核心技术、功能特性及其在实际应用中的潜力。 一…...

个人文章合集 - 前端相关

前端&#xff1a;简述表单提交前如何进行数据验证 前端&#xff1a;项目一个html中如何引入另一个html&#xff1f; 前端&#xff1a;一张图快速记忆CSS所有属性 前端&#xff1a;三个CSS预处理器(框架)-Sass、LESS 和 Stylus的比较 前端&#xff1a;基于Java角度理解nodejs/np…...

R语言的下载、安装及环境配置(RstudioVSCode)

0x01 R语言篇 一、软件介绍 R for Windows是一个免费的用于统计计算和统计制图的优秀工具&#xff0c;是R语言开发工具。它拥有数据存储和处理系统、数组运算工具&#xff08;其向量、矩阵运算方面功能尤其强大&#xff09;、完整连贯的统计分析工具、优秀的统计制图等功能。…...

解决使用重载后的CustomWidget无法正常显示但原生的QWidget却能正常显示的问题

这种情况大部分都是因为没有重写paintEvent: ​#include <QPainter> #include <QStyleOption>void CustomWidget::paintEvent(QPaintEvent *) { QStyleOption opt; opt.initFrom(this); QPainter p(this); style()->drawPrimitive(QStyle::PE_Widget, &opt,…...

微服务Sleuth解析部署使用全流程

目录 1、Sleuth链路追踪 1、添加依赖 2、修改日志配置文件 3、测试 2、zipkin可视化界面 1、docker安装 2、添加依赖 3、修改配置文件 4、查看页面 5、ribbon配置 1、Sleuth链路追踪 sleuth是链路追踪框架&#xff0c;用于在微服务架构下开发&#xff0c;各个微服务之…...

最具有世界影响力的人颜廷利:全球著名哲学家思想家起名大师

颜廷利教授&#xff0c;这位源自济南唐王镇的杰出人物&#xff0c;不仅是中国当代最杰出的国学大师之一&#xff0c;更是将传统文化与现代科技巧妙结合的先锋。他积极推崇以人工智能技术为辅助的国学研究方法&#xff0c;为这一古老领域注入了新的活力和时代表达。 除了在学术…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...