当前位置: 首页 > news >正文

LLM+知识图谱新工具! iText2KG:使用大型语言模型构建增量知识图谱

iText2KG是一个基于大型语言模型的增量知识图谱构建工具,通过从文本文档中提取实体和关系来逐步构建知识图谱。该工具具有零样本学习能力,能够在无需特定训练的情况下,在多个领域中进行知识提取。它包括文档提炼、实体提取和关系提取模块,最终将提取的知识集成到Neo4j中进行可视化。

iText2KG解决了在将实体列表和上下文传递给 LLM 时,使用 LLM 进行 KG 构建时出现的两个主要 LLM 幻觉问题。这些问题是:

  • LLM 可能会虚构所提供的实体列表中不存在的实体。我们通过用输入实体列表中最相似的实体替换虚构的实体来处理此问题。

  • LLM 可能无法从输入实体列表中为某些实体分配关系,从而导致“遗忘效应”。我们通过重新提示 LLM 提取这些实体的关系来处理这个问题。

相关链接

论文地址:https://arxiv.org/pdf/2409.03284

代码地址:https://github.com/AuvaLab/itext2kg

论文阅读

iText2KG:使用大型语言模型构建增量知识图谱

摘要

大多数可用数据都是非结构化的,因此很难获取有价值的信息。自动构建知识图谱 (KG) 对于结构化数据和使其可访问至关重要,可让用户有效地搜索信息。KG 还有助于洞察、推理和推理。传统的 NLP 方法(例如命名实体识别和关系提取)是信息检索的关键,但面临局限性,包括使用预定义的实体类型和需要监督学习。当前的研究利用大型语言模型的功能,例如零次或少量学习。然而,未解决和语义重复的实体和关系仍然带来挑战,导致图表不一致并需要大量的后处理。此外,大多数方法都依赖于主题。在本文中,我们提出了 iText2KG3,这是一种无需后处理的增量、主题独立的 KG 构建方法。这种即插即用的零样本方法适用于广泛的知识图谱构建场景,包括四个模块:文档提取器、增量实体提取器、增量关系提取器以及图形集成器和可视化。我们的方法在三个场景中表现出比基线方法更好的性能:将科学论文转换为图形、将网站转换为图形以及将简历转换为图形。

方法

总体架构

该iText2KG软件包由四个主要模块组成,它们协同工作,从非结构化文本构建和可视化知识图谱。整体架构概述:

  • 文档提取器:该模块处理原始文档,并根据用户定义的模式将其重新表述为语义块。它通过关注相关信息并以预定义的格式对其进行结构化来提高信噪比。

  • 增量实体提取器:此模块从语义块中提取唯一实体并解决歧义以确保每个实体都有明确定义。它使用余弦相似度度量将局部实体与全局实体进行匹配。

  • 增量关系提取器:此模块识别提取实体之间的关系。它可以以两种模式运行:使用全局实体丰富图形中的潜在信息,或使用局部实体建立更精确的关系。

  • 图形集成器和可视化:此模块将提取的实体和关系集成到 Neo4j 数据库中,提供知识图谱的可视化表示。它允许对结构化数据进行交互式探索和分析。

iEntities Matcher的算法

LLM 被提示提取代表一个唯一概念的实体,以避免语义混合的实体。下图显示了使用 Langchain JSON 解析器的实体和关系提取提示。它们分类如下:蓝色 - 由 Langchain 自动格式化的提示;常规 - 我们设计的提示;斜体 - 专门为实体和关系提取设计的提示。(a)关系提取提示和(b)实体提取提示。

实验

数据集

该数据集包括使用 GPT-4 生成的五份简历、五篇随机选择的代表不同研究领域且结构各异的科学文章,以及来自不同行业且规模各异的五个公司网站。此外,我们还根据预定义的模式包含了简历和科学文章的精简版本。

添加了另一个数据集,其中包含 1,500 个相似实体对和 500 个关系,灵感来自各个领域(例如新闻、科学文章、人力资源实践),以估计基于余弦相似度合并实体和关系的阈值。

下图中,我们为seasonal文章和公司公司构建了一个 KG,并获得了该公司公开发布的许可。此外,简历 (CV) KG 基于以下生成的 CV。

基线方法和iText2KG在三种情况下的KG构建比较。

不同类型的信息一致性得分柱状图文档。

结论

本文介绍了 iText2KG,这是一种利用 LLM 的零样本能力进行增量式 KG 构建的方法。该方法解决了传统 KG 构建过程中固有的局限性,这些过程通常依赖于预定义的本体和广泛的监督训练。iText2KG 方法的一个关键优势是它的灵活性,这源于使用用户定义的蓝图,该蓝图概述了在 KG 构建过程中要提取的关键组件。这使得该方法能够适应广泛的场景,因为没有适用于所有用例的通用蓝图;相反,设计因具体应用而异。此外,iText2KG 方法通过使用灵活的用户定义蓝图来指导提取过程,实现了文档类型独立性,使其能够处理结构化和非结构化文本。

相关文章:

LLM+知识图谱新工具! iText2KG:使用大型语言模型构建增量知识图谱

iText2KG是一个基于大型语言模型的增量知识图谱构建工具,通过从文本文档中提取实体和关系来逐步构建知识图谱。该工具具有零样本学习能力,能够在无需特定训练的情况下,在多个领域中进行知识提取。它包括文档提炼、实体提取和关系提取模块&…...

React基础-快速梳理

React介绍 React由Meta公司开发,是一个用于构建Web和原生交互界面的库 React的优势 相较于传统基于DOM开发的优势 组件化的开发方式不错的性能 相较于其它前端框架的优势 丰富的生态跨平台支持 开发环境创建 create-react-app是一个快速创建React开发环境的…...

H.264编解码 - NALU详解

一、概述 NALU(Network Abstraction Layer Unit)是H.264编解码中的一个重要概念。H.264是一种视频压缩标准,将视频数据分割成一系列的NALU。每个NALU都是一个独立的数据单元,包含视频压缩后的一个片段。每个NALU都有自己的起始码和长度前缀,用于标识NALU的起始位置和长度。…...

vSAN02:容错、存储策略、文件服务、快照与备份、iSCSI

目录 vSAN容错条带化存储策略1. 创建新策略2. 应用存储策略 vSAN文件服务文件服务快照与备份 vSAN iSCSI目标服务 vSAN容错 FTT:Fault to Tolerance 允许故障数 故障域:每一台vSAN主机是一个故障域 - 假设3台超融合(3计算1存储)&…...

图解C#高级教程(四):协变、逆变

本章的主题是可变性(variance),这里的可变性更多的是指基类和派生类之间的转换。可变性分为三种:协变(covariance)、逆变(contravariance)和不变(invariance)…...

详解CSS中的伪元素

4.3 伪元素 可以把样式应用到文档树中根本不存在的元素上。 ::first-line 文本中的第一行 ::first-letter 文本中的第一个字母 ::after 元素之后添加 ::before 元素之前 代码&#xff1a; <!DOCTYPE html> <html> <head><meta charset"utf-8&q…...

paper_template

paper_template Title 文章标题 Abstract 摘要 Keywords 关键词 Highlights Highlights / 创新点 Summary 写完笔记之后最后填&#xff0c;概述文章的内容&#xff0c;以后查阅笔记的时候先看这一段。 Backgrounds 描述当前研究背景 Research Objective 作者的研…...

【Bug】解决 Ubuntu 中 “error: Unable to Find Python3 Executable” 错误

解决 Ubuntu 中 “Unable to Find Python3 Executable” 错误 在 Ubuntu 系统上使用 Python 进行开发时&#xff0c;遇到找不到 python3 可执行文件的错误。 主要问题是无法正常打开终端&#xff08;原生与terminator&#xff09;&#xff0c;找不到python3&#xff0c;且无法…...

CUDA与TensorRT学习六:模型部署-CNN、模型部署-YOLOv8检测器、部署BEVFusion模型

文章目录 一、模型部署-CNN二、模型部署-YOLOv8检测器三、部署BEVFusion模型 一、模型部署-CNN 二、模型部署-YOLOv8检测器 三、部署BEVFusion模型...

防sql注入的网站登录系统设计与实现

课程名称 网络安全 大作业名称 防sql注入的网站登录系统设计与实现 姓名 学号 班级 大 作 业 要 求 结合mysql数据库设计一个web登录页面密码需密文存放&#xff08;可以采用hash方式&#xff0c;建议用sha1或md5加盐&#xff09;采用服务器端的验证码&#…...

如何快速切换电脑的ip地址

在当今的数字化时代&#xff0c;IP地址作为网络身份的重要标识&#xff0c;其重要性日益凸显。无论是出于保护个人隐私的需要&#xff0c;还是为了访问特定的网络服务等&#xff0c;快速切换电脑的IP地址已成为许多用户的迫切需求。本文将为你介绍几种实用的方法&#xff0c;帮…...

鸿蒙HarmonyOS之选择相册文件(照片/视频)方法

一、新建文件工具类FileUtil.ets 包含&#xff1a;选择照片方法、获取文件类型方法、去除后缀、获取后缀方法 import { BusinessError, request } from kit.BasicServicesKit; import photoAccessHelper from ohos.file.photoAccessHelper; import bundleManager from ohos.b…...

【QT Qucik】C++交互:接收QML信号

在本节课中&#xff0c;我们将深入探讨如何在C中接收QML发出的信号。我们将分为几个部分&#xff0c;详细说明信号的定义、发送及其在C中的接收。 理解信号和槽机制 Qt的信号与槽机制是一种用于对象之间通信的强大工具。信号是对象在特定事件发生时发送的通知&#xff0c;而槽…...

【C++】关键字+命名空间

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家了解C的命名空间&#xff0c;如果你觉得我写的还不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 目录 一. 关键字二. 命名空间2.1 命名空间的定义2.2 命名空间的使用a. 命名空间名称作用域限定…...

网络层——IP

IP地址 结构&#xff1a; 由32位二进制数组成&#xff0c;通常用点分的形式被分为四个部分&#xff0c;每个部分1byte&#xff0c;最大值为255。 从功能的角度看&#xff0c;ip地址由两部分组成&#xff0c;网络号和主机号。网络号标识了ip所在的网段&#xff0c;主机号标识了…...

随笔 漫游互联网

网络编程基础&#xff1a;漫游互联网 温故而知新&#xff0c;可以为师矣。互联网我们可以想象成一个立体的网状结构&#xff0c;由一个一个的小网络组成的网状结构&#xff0c;在一个一个小网络中通过一台一台机器组成&#xff0c;经过几十年的发展终于有了今天这个样子。谈论…...

8.9K Star,开源自托管离线翻译引擎

Hi&#xff0c;骚年&#xff0c;我是大 G&#xff0c;公众号「GitHub 指北」会推荐 GitHub 上有趣有用的项目&#xff0c;一分钟 get 一个优秀的开源项目&#xff0c;挖掘开源的价值&#xff0c;欢迎关注。 在全球化的今天&#xff0c;跨语言交流已成为日常需求&#xff0c;然…...

MySQL基础之DML

MySQL基础之DML 语法不区分大小写 分类 DD(definition)L 定义DM(manipulation)L 操作DQ(query)L 查询DC(control)L 控制 添加数据 # 指定字段添加数据(一条)insert into 表名(字段1,字段2,...) values(值1,值2,...);# 全部字段添加数据(一条)insert into 表名 values(值1,值…...

男单新老对决:林诗栋VS马龙,巅峰之战

听闻了那场激动人心的新老对决&#xff0c;不禁让人热血沸腾。在这场乒乓球的巅峰之战中&#xff0c;林诗栋与马龙的对决无疑是一场视觉与技术的盛宴。 3:3的决胜局&#xff0c;两位选手的每一次挥拍都充满了策略与智慧&#xff0c;他们的每一次得分都让人心跳加速。 林诗栋&am…...

Java如何判断堆区中的对象可以被回收了?

如何判断堆区中的对象可以被回收了 在Java中&#xff0c;垃圾回收机制会帮助我们自动回收不再被使用的对象&#xff0c;已到达即使释放内存的效果&#xff0c;但是Java又是怎么知道哪些对象不会再被我们继续使用了呢&#xff0c;希望你通过本篇文章&#xff0c;理解引用计数法与…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...

怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)

+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...