当前位置: 首页 > news >正文

基于猎豹优化算法(The Cheetah Optimizer,CO)的多无人机协同三维路径规划(提供MATLAB代码)

一、猎豹优化算法

猎豹优化算法(The Cheetah Optimizer,CO)由MohammadAminAkbari等人于2022年提出,该算法性能高效,思路新颖。

参考文献: Akbari, M.A., Zare, M., Azizipanah-abarghooee, R. et al. The cheetah optimizer: a nature-inspired metaheuristic algorithm for large-scale optimization problems. Sci Rep 12, 10953 (2022). https://doi.org/10.1038/s41598-022-14338-z
在这里插入图片描述

CO算法描述:

在这里插入图片描述

二、无人机(UAV)三维路径规划

单个无人机三维路径规划数学模型参考如下文献:

Phung M D , Ha Q P . Safety-enhanced UAV Path Planning with Spherical Vector-based Particle Swarm Optimization[J]. arXiv e-prints, 2021.

每个无人机的目标函数由路径长度成本,安全性与可行性成本、飞行高度成本和路径平滑成本共同组成:

2.1路径长度成本

路径长度成本由相邻两个节点之间的欧氏距离和构成,其计算公式如下:
在这里插入图片描述

2.2路径安全性与可行性成本

在这里插入图片描述

路径安全性与可行性成本通过下式计算:

在这里插入图片描述

2.3路径飞行高度成本

在这里插入图片描述

飞行高度成本通过如下公式计算所得:
在这里插入图片描述
在这里插入图片描述

2.4路径平滑成本

在这里插入图片描述

投影向量通过如下公式计算:

在这里插入图片描述

转弯角度的计算公式为:
在这里插入图片描述

爬坡角度的计算公式为:

在这里插入图片描述

平滑成本的计算公式为:
在这里插入图片描述

2.5总成本(目标函数)

在这里插入图片描述

总成本由最优路径成本,安全性与可行性成本、飞行高度成本和路径平滑成本的线性加权所得。其中,b为加权系数。

三、实验结果

在三维无人机路径规划中,无人机的路径由起点,终点以及起始点间的点共同连接而成。因此,自变量为无人机起始点间的各点坐标,每个无人机的目标函数为总成本(公式9)。本文研究3个无人机协同路径规划,总的目标函数为3个无人机的总成本之和。

Xmin=[Xmin0,Xmin1,Xmin2];
Xmax=[Xmax0,Xmax1,Xmax2];
dim=dim0+dim1+dim2;
fobj=@(x)GetFun(x,fobj0,fobj1,fobj2);%总的目标函数
pop=50;
maxgen=1500;[fMin ,bestX,Convergence_curve]=CO(pop,maxgen,Xmin,Xmax,dim,fobj);%Trajectories,fitness_history, population_history
% save bestX bestX
BestPosition1 = SphericalToCart(bestX(1:dim/3),model);% 第一个无人机得到的路径坐标位置
BestPosition2 = SphericalToCart(bestX(1+dim/3:2*dim/3),model1);% 第二个无人机得到的路径坐标位置
BestPosition3 = SphericalToCart(bestX(1+2*dim/3:end),model2);% 第三个无人机得到的路径坐标位置gca1=figure(1);
gca2=figure(2);
gca3=figure(3);
PlotSolution(BestPosition1,model,gca1,gca2,gca3);% 画第一个无人机
PlotSolution1(BestPosition2,model1,gca1,gca2,gca3);% 画第二个无人机
PlotSolution2(BestPosition3,model2,gca1,gca2,gca3);% 画第三个无人机figure
plot(Convergence_curve,'LineWidth',2)
xlabel('Iteration');
ylabel('Best Cost');
grid on;

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关文章:

基于猎豹优化算法(The Cheetah Optimizer,CO)的多无人机协同三维路径规划(提供MATLAB代码)

一、猎豹优化算法 猎豹优化算法(The Cheetah Optimizer,CO)由MohammadAminAkbari等人于2022年提出,该算法性能高效,思路新颖。 参考文献: Akbari, M.A., Zare, M., Azizipanah-abarghooee, R. et al. The…...

Linux:进程的创建、终止和等待

一、进程创建 1.1 fork函数初识 #include pid_t fork(void); 返回值:子进程中返回0,父进程返回子进程id,出错返回-1 调用fork函数后,内核做了下面的工作: 1、创建了一个子进程的PCB结构体、并拷贝一份相同的进程地址…...

数值优化基础——基于优化的规划算法

1 最优化问题的一般形式 最优化问题:满足一系列约束的可行域内,找到使得目标函数最小的解 min ⁡ f ( x ) s.t. x...

括号匹配——(栈实现)

题目链接 有效的括号https://leetcode.cn/problems/valid-parentheses/description/ 题目要求 样例 解题代码 import java.util.*; class Solution {public boolean isValid(String str) {Stack<Character> stacknew Stack<>();for(int i0;i<str.length();i)…...

【Java 并发编程】初识多线程

前言 到目前为止&#xff0c;我们学到的都是有关 “顺序” 编程的知识&#xff0c;即程序中所有事物在任意时刻都只能执行一个步骤。例如&#xff1a;在我们的 main 方法中&#xff0c;都是多个操作以 “从上至下” 的顺序调用方法以至结束的。 虽然 “顺序” 编程能够解决相当…...

Linux下载安装MySQL8.4

这里写目录标题 一、准备工作查看系统环境查看系统架构卸载已安装的版本 二、下载MySQL安装包官网地址 三、安装过程上传到服务器目录解压缩&#xff0c;设置目录及权限配置my.cnf文件初始化数据库配置MySQL开放端口 一、准备工作 查看系统环境 确认Linux系统的版本和架构&am…...

强化学习笔记之【DDPG算法】

强化学习笔记之【DDPG算法】 文章目录 强化学习笔记之【DDPG算法】前言&#xff1a;原论文伪代码DDPG算法DDPG 中的四个网络代码核心更新公式 前言&#xff1a; 本文为强化学习笔记第二篇&#xff0c;第一篇讲的是Q-learning和DQN 就是因为DDPG引入了Actor-Critic模型&#x…...

c++继承(下)

c继承&#xff08;下&#xff09; &#xff08;1&#xff09;继承与友元&#xff08;2&#xff09;继承与静态成员&#xff08;3&#xff09;多继承及其菱形继承问题3.1 继承模型3.2 虚继承3.3 多继承中指针偏移问题 &#xff08;4&#xff09;继承和组合&#xff08;9&#xf…...

数据结构 ——— 单链表oj题:反转链表

目录 题目要求 手搓一个简易链表 代码实现 题目要求 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表 手搓一个简易链表 代码演示&#xff1a; struct ListNode* n1 (struct ListNode*)malloc(sizeof(struct ListNode)); assert(n1);…...

前端项目npm install报错解决的解决办法

报错问题一: [rootspug-api spug_web]# npm install npm WARN deprecated xterm4.19.0: This package is now deprecated. Move to xterm/xterm instead. npm WARN deprecated workbox-google-analytics4.3.1: It is not compatible with newer versions of GA starting with v…...

vue双向绑定/小程序双向绑定区别

Vue双向绑定与小程序双向绑定在实现方式、语法差异以及功能特性上均存在显著区别。以下是对这两者的详细比较&#xff1a; 一、实现方式 Vue双向绑定 Vue的双向绑定主要通过其响应式数据系统实现。Vue使用Object.defineProperty()方法&#xff08;或在Vue 3中使用Proxy对象&am…...

华为OD机试真题---字符串变换最小字符串

题目描述: 给定一个字符串s&#xff0c;最多只能进行一次变换&#xff0c;返回变换后能得到的最小字符串(按照字典序进行比较)。 变换规则: 交换字符串中任意两个不同位置的字符。 输入描述: 一串小写字母组成的字符串s 输出描述: 按照要求进行变换得到的最小字符串 补…...

JAVA基础面试题汇总(持续更新)

1、精确运算场景使用浮点型运算问题 精确运算场景&#xff08;如金融领域计算应计利息&#xff09;计算数字&#xff0c;使用浮点型&#xff0c;由于精度丢失问题&#xff0c;会导致计算后的结果和预期不一致&#xff0c;使用Bigdecimal类型解决此问题&#xff0c;示例代码如下…...

设计模式-创建型-常用:单例模式、工厂模式、建造者模式

单例模式 概念 一个类只允许创建一个对象&#xff08;或实例&#xff09;&#xff0c;那这个类就是单例类&#xff0c;这种设计模式就叫做单例模式。对于一些类&#xff0c;创建和销毁比较复杂&#xff0c;如果每次使用都创建一个对象会很耗费性能&#xff0c;因此可以把它设…...

【数据结构】【链表代码】随机链表的复制

/*** Definition for a Node.* struct Node {* int val;* struct Node *next;* struct Node *random;* };*/typedef struct Node Node; struct Node* copyRandomList(struct Node* head) {if(headNULL)return NULL;//1.拷贝结点&#xff0c;连接到原结点的后面Node…...

Linux 系统五种帮助命令的使用

Linux 系统五种帮助命令的使用 本文将介绍 Linux 系统中常用的帮助命令&#xff0c;包括 man、–help、whatis、apropos 和 info 命令。这些命令对于新手和有经验的用户来说&#xff0c;都是查找命令信息、理解命令功能的有力工具。 文章目录 Linux 系统五种帮助命令的使用一…...

Vueron引领未来出行:2026年ADAS激光雷达解决方案上市路线图深度剖析

Vueron ADAS激光雷达解决方案路线图分析&#xff1a;2026年上市展望 Vueron近期发布的ADAS激光雷达解决方案路线图&#xff0c;标志着该公司在自动驾驶技术领域迈出了重要一步。该路线图以2026年上市为目标&#xff0c;彰显了Vueron对未来市场趋势的精准把握和对技术创新的坚定…...

Java | Leetcode java题解之第458题可怜的小猪

题目&#xff1a; 题解&#xff1a; class Solution {public int poorPigs(int buckets, int minutesToDie, int minutesToTest) {if (buckets 1) {return 0;}int[][] combinations new int[buckets 1][buckets 1];combinations[0][0] 1;int iterations minutesToTest /…...

怎么不改变视频大小的情况下,修改视频的时长

视频文件太大怎么变小&#xff1f;不影响画质的四种方法 怎么不改变视频大小的情况下,修改视频的时长 截取结尾的时间你可以使用 ffmpeg 来裁剪视频的结尾部分。假设你想去掉视频最后的3秒钟&#xff0c;可以先使用 ffmpeg 获取视频的总时长&#xff0c;然后通过指定一个新的…...

数据结构:AVL树

前言 学习了普通二叉树&#xff0c;发现普通二叉树作用不大&#xff0c;于是我们学习了搜索二叉树&#xff0c;给二叉树新增了搜索、排序、去重等特性&#xff0c; 但是&#xff0c;在极端情况下搜索二叉树会退化成单边树&#xff0c;搜索的时间复杂度达到了O(N)&#xff0c;这…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...