成像基础 -- 最大对焦清晰的物距计算
最大对焦清晰的物距计算
1. 基本概念
最大对焦清晰的物距通常与景深(Depth of Field, DOF)相关,尤其是无穷远处的物体可以被清晰对焦到的距离,称为超焦距(Hyperfocal Distance)。通过计算超焦距,可以得出当镜头对焦于该距离时,从某个最小物距一直到无穷远的所有物体都可以清晰成像。
超焦距公式
超焦距的计算公式为:
H = f 2 N ⋅ c + f H = \frac{f^2}{N \cdot c} + f H=N⋅cf2+f
其中:
- H H H 是超焦距(Hyperfocal Distance)
- f f f 是镜头焦距
- N N N 是光圈数(f-number,例如 f/2.8, f/8 等)
- c c c 是弥散圆直径(Circle of Confusion, CoC),用于衡量人眼可以容忍的模糊程度,通常取决于感光元件的尺寸。
参数说明
- 焦距 f f f:镜头的焦距,单位为毫米(mm)。
- 光圈 N N N:光圈的 f 数字(如 f/2.8, f/4),数值越小光圈越大。
- 弥散圆直径 c c c:反映“清晰”的标准。对于全画幅相机,通常取 c = 0.03 mm c = 0.03 \, \text{mm} c=0.03mm。
2. 计算实例
假设我们使用一台全画幅相机(35mm 画幅),镜头焦距为 50mm,光圈为 f/8,弥散圆直径 c = 0.03 mm c = 0.03 \, \text{mm} c=0.03mm,计算超焦距。
H = 5 0 2 8 × 0.03 + 50 H = \frac{50^2}{8 \times 0.03} + 50 H=8×0.03502+50
计算步骤:
- 焦距平方: 5 0 2 = 2500 50^2 = 2500 502=2500
- 计算分母: 8 × 0.03 = 0.24 8 \times 0.03 = 0.24 8×0.03=0.24
- 计算超焦距: H = 2500 0.24 + 50 = 10416.67 + 50 = 10466.67 mm H = \frac{2500}{0.24} + 50 = 10416.67 + 50 = 10466.67 \, \text{mm} H=0.242500+50=10416.67+50=10466.67mm
因此,超焦距约为 10.47 米。
3. 最小清晰物距计算
当镜头对焦在超焦距时,从某个最小物距到无穷远都可以清晰成像。最小物距 d min d_{\text{min}} dmin 计算公式如下:
d min = H ⋅ d H + ( d − f ) d_{\text{min}} = \frac{H \cdot d}{H + (d - f)} dmin=H+(d−f)H⋅d
其中:
- d d d 是当前对焦距离
- H H H 是超焦距
- f f f 是焦距
对焦在超焦距的情况下
当镜头对焦在超焦距 H H H 时,最小清晰物距为:
d min = H 2 2 H − f d_{\text{min}} = \frac{H^2}{2H - f} dmin=2H−fH2
使用前面的例子,焦距为 50mm,超焦距为 10467mm,计算最小清晰物距:
d min = 1046 7 2 2 × 10467 − 50 ≈ 5233.5 mm = 5.23 米 d_{\text{min}} = \frac{10467^2}{2 \times 10467 - 50} \approx 5233.5 \, \text{mm} = 5.23 \, \text{米} dmin=2×10467−50104672≈5233.5mm=5.23米
因此,当对焦在超焦距时,从约 5.23 米 到无穷远的物体都会处于清晰范围内。
4. 总结
- 最大对焦清晰的物距 是通过计算超焦距来获得的,表示从某个最小距离到无穷远的物体都可以清晰成像。
- 公式 H = f 2 N ⋅ c + f H = \frac{f^2}{N \cdot c} + f H=N⋅cf2+f 用于计算超焦距,考虑了焦距、光圈大小和弥散圆等参数。
- 当镜头对焦在超焦距时,从约一半超焦距的距离到无穷远的物体都将处于清晰范围内。
相关文章:
成像基础 -- 最大对焦清晰的物距计算
最大对焦清晰的物距计算 1. 基本概念 最大对焦清晰的物距通常与景深(Depth of Field, DOF)相关,尤其是无穷远处的物体可以被清晰对焦到的距离,称为超焦距(Hyperfocal Distance)。通过计算超焦距ÿ…...
win10服务器启动且未登录时自动启动程序
场景:公司服务器安装了几个程序,当服务器断电重启之后希望程序能自动打开,而不需要手动登录服务器打开。 因为软件是自己开发的所以安全方面这里没有考虑。 1.打开服务器管理器,点击工具,选择任务计划程序 2.在任务计…...
算法专题四: 前缀和
目录 1. 前缀和2. 二维前缀和3. 寻找数组的中心下标4. 除自身以外数组的乘积5. 和为k的子数组6. 和可被K整除的子数组7. 连续数组8. 矩阵区域和 博客主页:酷酷学!!! 感谢关注~ 1. 前缀和 算法思路: 根据题意, 创建一个前缀和数组, dp[i] dp[i -1] arr[i], 再使用前缀和数组,…...
【Linux】基础IO(文件描述符、缓冲区、重定向)
🌈个人主页:秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343🔥 系列专栏:https://blog.csdn.net/qinjh_/category_12625432.html 目录 前言 C文件IO相关操作 系统文件I/O open open函数返回值 文件描述符fd re…...
一篇文章快速学会docker容器技术
目录 一、Docker简介及部署方法 1.1Docker简介 1.1.1什么是docker 1.1.2 docker在企业中的应用场景 1.1.3 docker与虚拟化的对比 1.1.4 docker的优势 二 、部署docker 2.1 容器工作方法 2.2 部署第一个容器 2.2.1 配置软件仓库 2.2.2 安装docker-ce并启动服务 2.2.…...
【MySQL】使用 JDBC 连接数据库
文章目录 前言1. 认识 JDBC1.1 概念1.2 好处 2. 使用 JDBC2.1 安装数据驱动包2.2 把 jar 包导入到项目中2.3 代码编写2.4 测试结果 3. 代码优化4. 源码展示结语 前言 在 MySQL 系列中,我们介绍了很多内容,包括但不限于建库建表,增删查改等等…...
数据结构与算法笔记:概念与leetcode练习题
1、数组Array 时间复杂度 数组访问:O(1) 数组搜索:O(N) 数组插入:O(N) 数组删除:O(N) 特点 适合读,不适合写 数组常用操作 # 1、创建数组 a [] # 2、尾部添加元素 a.append(1) a.append(2) a.append(3) # 3、…...
十大时间序列预测模型
目录 1. 自回归模型 原理 核心公式 推导过程: 完整案例 2. 移动平均模型 原理 核心公式 推导过程: 完整案例 3. 自回归移动平均模型 原理 核心公式 推导过程: 完整案例 4. 自回归积分移动平均模型 原理 核心公式 推导过程 完整案例 5. 季节性自回归积分…...
G2O 通过工厂函数类 OptimizationAlgorithmFactory 来生成固定搭配的优化算法
OptimizationAlgorithmFactory 类位于 optimization_algorithm_factory.h //***g2o源码 g2o/g2o/core/optimization_algorithm_factory.h ***// /*** \brief create solvers based on their short name** Factory to allocate solvers based on their short name.* The Factor…...
手机USB连接不显示内部设备,设备管理器显示“MTP”感叹号,解决方案
进入小米驱动下载界面,等小米驱动下载完成后,解压此驱动文件压缩包。 5、小米USB驱动安装方法:右击“计算机”,从弹出的右键菜单中选择“管理”项进入。 6、在打开的“计算机管理”界面中,展开“设备管理器”项&…...
SpringBootWeb快速入门!详解如何创建一个简单的SpringBoot项目?
在现代Web开发中,SpringBoot以其简化的配置和快速的开发效率而受到广大开发者的青睐。本篇文章将带领你从零开始,搭建一个基于SpringBoot的简单Web应用~ 一、前提准备 想要创建一个SpringBoot项目,需要做如下准备: idea集成开发…...
RabbitMQ 入门到精通指南
RabbitMQ 是一种开源消息代理软件,基于 AMQP(高级消息队列协议)构建,用于异步传输数据,帮助我们解耦系统、削峰流量、处理高并发。本指南将详细介绍 RabbitMQ 的架构设计、使用场景、安装步骤以及一些高级应用…...
ARM base instruction -- movz
Move wide with zero moves an optionally-shifted 16-bit immediate value to a register. 用零移动宽值将可选移位的16位即时值移动到寄存器。即把立即数移动寄存器前先把寄存器清零。 32-bit variant MOVZ <Wd>, #<imm>{, LSL #<shift>} 64-bit var…...
安装jdk安装开发环境与maven
1.下载maven 链接: https://pan.baidu.com/s/1gTmIWBFBdIQob0cqGG3E_Q 提取码: 42ck,apache-maven-3.8.4-bin.zip 2.安装java jdk yum install -y java-1.8.0-openjdk-devel 3.在/opt目录下新建目录 mkdir /opt/maven 4.将apache-maven-3.8.4-bin.zip上传到/opt/ma…...
openpnp - 图像传送方向要在高级校正之前设置好
文章目录 openpnp - 图像传送方向要在高级校正之前设置好笔记图像传送方向的确定END openpnp - 图像传送方向要在高级校正之前设置好 笔记 图像传送方向和JOG面板的移动控制和实际设备的顶部摄像头/底部摄像头要一致,这样才能和贴板子时的实际操作方向对应起来。 …...
数据库建表规范【记录】
建表规约 【强制】创建表时必须显式指定表存储引擎类型,如无特殊需求,一律为InnoDB。 【强制】必须有行数据的创建时间字段create_date和最后更新时间字段edit_date。 【强制】自增主键命名必须是id,关联表外键命名xxyyzz_id;业务…...
css的动画属性
CSS动画属性是CSS3的一个重要特性,它允许你创建平滑的过渡效果,增强用户的交互体验。CSS动画可以通过keyframes规则和animation属性来创建。 animation属性 animation属性是一个简写属性,用于设置动画的多个属性,包括动画名称、…...
【Ubuntu】PlantUML工具 | 安装 | 语法 | 使用工具画序列图
🌱 PlantUML是一个通用性很强的工具,可以快速、直接地创建各种图表。 目录 1 安装 2 使用PlantUML画序列图 ① 语法 ②示例和效果 利用简单直观的语言,用户可以毫不费力地绘制各种类型的图表。PlantUML 是一个开源项目,支持快速绘制:• 时序图• 用例图• 类图• 对...
微信步数C++
题目: 样例解释: 【样例 #1 解释】 从 (1,1) 出发将走 2 步,从 (1,2) 出发将走 4 步,从 (1,3) 出发将走 4 步。 从 (2,1) 出发将走 2 步,从 (2,2) 出发将走 3 步,从 (2,3) 出发将走 3 步。 从 (3,1) 出发将…...
AI写作工具大比拼:揭秘Claude的神秘魅力以及如何订阅Claude
AI写作困境与Claude的惊喜表现 最近有很多朋友在吐槽AI写的文章不太行,我一看他的要求写的很清楚,已经把提示词都用到位了,例如:写作背景、写作要求等,都有具体写出来。但文章阅读起来就是欠缺点啥。 你们有没有遇到…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
Matlab实现任意伪彩色图像可视化显示
Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中,如何展示好看的实验结果图像非常重要!!! 1、灰度原始图像 灰度图像每个像素点只有一个数值,代表该点的亮度(或…...
【若依】框架项目部署笔记
参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作: 压缩包下载:http://download.redis.io/releases 1. 上传压缩包,并进入压缩包所在目录,解压到目标…...
用 FFmpeg 实现 RTMP 推流直播
RTMP(Real-Time Messaging Protocol) 是直播行业中常用的传输协议。 一般来说,直播服务商会给你: ✅ 一个 RTMP 推流地址(你推视频上去) ✅ 一个 HLS 或 FLV 拉流地址(观众观看用)…...
性能优化中,多面体模型基本原理
1)多面体编译技术是一种基于多面体模型的程序分析和优化技术,它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象,通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中࿰…...
C#中用于控制自定义特性(Attribute)
我们来详细解释一下 [AttributeUsage(AttributeTargets.Class, AllowMultiple false, Inherited false)] 这个 C# 属性。 在 C# 中,Attribute(特性)是一种用于向程序元素(如类、方法、属性等)添加元数据的机制。Attr…...
C/Python/Go示例 | Socket Programing与RPC
Socket Programming介绍 Computer networking这个领域围绕着两台电脑或者同一台电脑内的不同进程之间的数据传输和信息交流,会涉及到许多有意思的话题,诸如怎么确保对方能收到信息,怎么应对数据丢失、被污染或者顺序混乱,怎么提高…...
