布匹瑕疵检测数据集 4类 2800张 布料缺陷 带标注 voc yolo

布匹瑕疵检测数据集 4类 2800张 布料缺陷 带标注 voc yolo

对应标注,格式VOC (XML),选配Y0L0(TXT)
label| pic_ num| box_ _num
hole: (425, 481)
suspension_ wire: (1739, 1782)
topbasi: (46, 46)
dirty: (613, 1425)
total: (2823, 3734)
破洞,勾线,污染等

布匹瑕疵检测数据集介绍
数据集名称
布匹瑕疵检测数据集 (Fabric Defect Detection Dataset)
数据集概述
该数据集是一个专门用于训练和评估布料缺陷检测模型的数据集。数据集包含2800张图像,每张图像都带有详细的标注信息,标注格式包括VOC(Pascal VOC)和YOLO格式。这些图像涵盖了各种布料上的常见缺陷类型,如破洞、勾线、污染等。通过这个数据集,可以训练出能够准确检测和定位布料上不同类型的瑕疵的模型,从而帮助进行质量控制、生产过程监控等应用。
数据集特点
- 高质量图像:数据集中的图像具有高分辨率,能够提供丰富的细节信息。
- 带标注:每张图像都有详细的标注信息,包括缺陷的位置和大小。
- 多格式标注:标注信息同时以VOC和YOLO格式提供,方便不同框架的使用。
- 实际应用场景:适用于需要精确检测布料缺陷的场景,如纺织品生产线、质量控制部门等。
数据集结构
fabric_defect_detection_dataset/
├── images/ # 图像文件
│ ├── 00001.jpg # 示例图像
│ ├── 00002.jpg
│ └── ...
├── annotations/ # 标注文件
│ ├── VOC/ # Pascal VOC格式标注
│ │ ├── 00001.xml # 示例VOC标注文件
│ │ ├── 00002.xml
│ │ └── ...
│ ├── YOLO/ # YOLO格式标注(选配)
│ │ ├── 00001.txt # 示例YOLO标注文件
│ │ ├── 00002.txt
│ │ └── ...
├── data.yaml # 类别描述文件
├── README.md # 数据集说明
数据集内容
-
images/- 功能:存放图像文件。
- 内容:
00001.jpg:示例图像。00002.jpg:另一张图像。- ...
-
annotations/- 功能:存放标注文件。
- 内容:
VOC/:存放Pascal VOC格式的标注文件。00001.xml:示例VOC标注文件。00002.xml:另一张图像的VOC标注文件。- ...
YOLO/:存放YOLO格式的标注文件(选配)。00001.txt:示例YOLO标注文件。00002.txt:另一张图像的YOLO标注文件。- ...
-
data.yaml- 功能:定义数据集的类别和其他相关信息。
- 内容:
train: fabric_defect_detection_dataset/images val: fabric_defect_detection_dataset/images nc: 4 names: ['hole', 'suspension_wire', 'topbasi', 'dirty']
-
README.md- 功能:数据集的详细说明文档。
- 内容:
- 数据集的来源和用途。
- 数据集的结构和内容。
- 如何使用数据集进行模型训练和评估。
- 其他注意事项和建议。
数据集统计
- 总图像数量:2800张
- 总标注框数量:3734个
- 类别:4类
- 平均每张图像的标注框数量:约1.33个
具体类别及其统计如下:
hole(破洞):(425, 481)suspension_wire(勾线):(1739, 1782)topbasi(顶基):(46, 46)dirty(污染):(613, 1425)
使用说明
-
环境准备
- 安装依赖库:
pip install -r requirements.txt - 确保安装了常用的深度学习库,例如
torch,torchvision,numpy等。
- 安装依赖库:
-
数据集路径设置
- 将数据集解压到项目目录下,确保路径正确。
-
训练模型
以下是一个使用PyTorch和
torchvision库进行布匹瑕疵检测的示例代码。我们将使用预训练的Faster R-CNN模型,并对其进行微调以适应我们的数据集。import torch import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection import FasterRCNN from torchvision.models.detection.rpn import AnchorGenerator from torchvision.transforms import functional as F from torch.utils.data import DataLoader, Dataset from PIL import Image import os import xml.etree.ElementTree as ET# 自定义数据集类 class FabricDefectDetectionDataset(Dataset):def __init__(self, root, transforms=None):self.root = rootself.transforms = transformsself.imgs = list(sorted(os.listdir(os.path.join(root, "images"))))self.annotations = list(sorted(os.listdir(os.path.join(root, "annotations", "VOC"))))def __getitem__(self, idx):img_path = os.path.join(self.root, "images", self.imgs[idx])annotation_path = os.path.join(self.root, "annotations", "VOC", self.annotations[idx])img = Image.open(img_path).convert("RGB")annotation_root = ET.parse(annotation_path).getroot()boxes = []labels = []for obj in annotation_root.findall('object'):xmin, ymin, xmax, ymax = [int(obj.find('bndbox').find(tag).text) for tag in ('xmin', 'ymin', 'xmax', 'ymax')]label = obj.find('name').textlabel_id = ['hole', 'suspension_wire', 'topbasi', 'dirty'].index(label) + 1boxes.append([xmin, ymin, xmax, ymax])labels.append(label_id)boxes = torch.as_tensor(boxes, dtype=torch.float32)labels = torch.as_tensor(labels, dtype=torch.int64)target = {}target["boxes"] = boxestarget["labels"] = labelstarget["image_id"] = torch.tensor([idx])if self.transforms is not None:img, target = self.transforms(img, target)return F.to_tensor(img), targetdef __len__(self):return len(self.imgs)# 数据预处理 def get_transform(train):transforms = []if train:transforms.append(torchvision.transforms.RandomHorizontalFlip(0.5))return torchvision.transforms.Compose(transforms)# 加载数据集 dataset = FabricDefectDetectionDataset(root='fabric_defect_detection_dataset', transforms=get_transform(train=True)) dataset_test = FabricDefectDetectionDataset(root='fabric_defect_detection_dataset', transforms=get_transform(train=False))indices = torch.randperm(len(dataset)).tolist() dataset = torch.utils.data.Subset(dataset, indices[:-500]) dataset_test = torch.utils.data.Subset(dataset_test, indices[-500:])data_loader = DataLoader(dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=lambda x: tuple(zip(*x))) data_loader_test = DataLoader(dataset_test, batch_size=1, shuffle=False, num_workers=4, collate_fn=lambda x: tuple(zip(*x)))# 定义模型 model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) num_classes = 5 # 4类缺陷 + 背景 in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)# 设置设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device)# 定义优化器 params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)# 训练模型 num_epochs = 10 for epoch in range(num_epochs):model.train()for images, targets in data_loader:images = list(image.to(device) for image in images)targets = [{k: v.to(device) for k, v in t.items()} for t in targets]loss_dict = model(images, targets)losses = sum(loss for loss in loss_dict.values())optimizer.zero_grad()losses.backward()optimizer.step()print(f'Epoch {epoch+1}/{num_epochs}, Loss: {losses.item()}')# 验证模型model.eval()with torch.no_grad():for images, targets in data_loader_test:images = list(image.to(device) for image in images)targets = [{k: v.to(device) for k, v in t.items()} for t in targets]outputs = model(images)# 保存模型 torch.save(model.state_dict(), 'fabric_defect_detection_model.pth')
注意事项
- 数据格式:确保输入的数据格式正确,特别是图像文件和标注文件的格式。
- 超参数调整:根据实际情况调整学习率、批大小等超参数,以获得最佳训练效果。
- 硬件要求:建议使用GPU进行训练和推理,以加快处理速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
- 数据增强:可以通过数据增强技术(如随机翻转、旋转等)来增加模型的鲁棒性。
- 模型选择:除了Faster R-CNN,还可以尝试其他目标检测模型,如YOLOv5、SSD等,以找到最适合当前任务的模型。
相关文章:
布匹瑕疵检测数据集 4类 2800张 布料缺陷 带标注 voc yolo
布匹瑕疵检测数据集 4类 2800张 布料缺陷 带标注 voc yolo 对应标注,格式VOC (XML),选配Y0L0(TXT) label| pic_ num| box_ _num hole: (425, 481) suspension_ wire: (1739, 1782) topbasi: (46, 46) dirty: (613&…...
灵动微高集成度电机MCU单片机
由于锂电技术的持续进步、消费者需求的演变、工具种类的革新以及应用领域的扩展,电动工具行业正呈现出无绳化、锂电化、大功率化、小型化、智能化和一机多能化的发展趋势。无绳化和锂电化的电动工具因其便携性和高效能的特性,已成为市场增长的重要驱动力…...
陪护小程序|护理陪护系统|陪护小程序成品
智能化,作为智慧医疗宏伟蓝图的基石,正引领着一场医疗服务的深刻变革。在这场变革的浪潮中,智慧医院小程序犹如璀璨新星,迅速崛起,而陪护小程序的诞生,更是如春风化雨,细腻地触及了老年病患、家…...
【JVM】基础篇
1 初识JVM 1.1 什么是JVM JVM 全称是 Java Virtual Machine,中文译名 Java虚拟机。JVM 本质上是一个运行在计算机上的程序,他的职责是运行Java字节码文件。 Java源代码执行流程如下: 分为三个步骤: 1、编写Java源代码文件。 …...
软件测试工程师 朝哪里进阶?
软件测试工程师 朝哪里进阶? 这里浅谈一下我的看法。 软件测试工程师 朝哪里进阶呢? 当我们测试工程师工作了2-3年后,就需要往前走往高走,就像一句名言说的:我们需要像ceo一样工作。 将自己的边界扩大一点࿰…...
Obsidian Plugin Release Pre-check
- [ ] 修改代码 - [ ] 修改README.md - [ ] 修改manifest.json - [ ] --将上述修改push到GitHub-- - [ ] 修改release版本 git tag git tag -a 1.0.6 -m "1.0.6" git push origin 1.0.6 ------------------------------------------- 备忘https://semver.org/lang/…...
Unity中实现预制体自动巡逻与攻击敌人的完整实现指南
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
OpenJudge | Shortest Prefixes
总时间限制: 1000ms 内存限制: 65536kB 描述 A prefix of a string is a substring starting at the beginning of the given string. The prefixes of “carbon” are: “c”, “ca”, “car”, “carb”, “carbo”, and “carbon”. Note that the empty string is not co…...
速盾:高防服务器是如何防御CC攻击的?
高防服务器是一种专门用于防御DDoS(分布式拒绝服务)攻击的服务器。其中一种常见的DDoS攻击就是CC(连续性攻击),它通过向目标服务器发送大量的请求来耗尽服务器资源,使网站无法正常运行。高防服务器采用多种…...
Android阶段学习思维导图
前言 记录下自己做的一个对Android原生应用层的思维导图,方便个人记忆扩展;这里只露出二级标题。 后语 虽然有些内容只是初步了解,但还是记录了下来;算是对过去一段学习的告别。...
React生命周期案例详解
React 组件的生命周期是指组件从创建、渲染、更新到卸载的整个过程。在 React 16 及之前的版本中,生命周期方法被分为几个不同的阶段:挂载(Mounting)、更新(Updating)、卸载(Unmounting…...
【ubuntu】ubuntu20.04安装显卡驱动
1.安装 点击右下角Apply Changes。 等安装好之后,重启。 现在的nvidia驱动已经很好安装了,比早期时安装出现黑屏等情况好了很多。 2.验证 nvidia-smi...
Mongo Java Driver使用getCollection做分页查询遇到的一些坑
背景 最近在做Mongo上的表数据的迁移,原本应该是DBA要干的活,但是想着DBA排期比较长,加上我们开发的权限又非常有限,而且数据量又没有多少,就想着自己开发个小小的程序从旧实例上查,写到新实例上去算了。于…...
RK3568笔记六十四:SG90驱动测试
若该文为原创文章,转载请注明原文出处。 前面有测试过PWM驱动,现在使用两种方式来产生PWM驱动SG90,实现舵机旋转任意角度 方法一:使用硬件PWM 方法二:使用高精度定时器,GPIO模拟PWM. 一、PWM子系统框架 二、SG90控制方法 舵机的控制需要MCU产生一个周期为20ms的脉冲信号…...
31 基于51单片机的水位监测系统仿真
目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机,DHT11温湿度检测,水位检测,通过LCD1602显示,超过阈值报警,继电器驱动电机转动。通过矩阵按键切换选择设置各项参数阈值。 …...
Docker 实践与应用举例
一、容器化Web应用: 创建一个Docker容器来运行一个简单的Web应用,例如一个基于Node.js的Express应用。首先,编写Dockerfile来定义容器的构建过程,然后使用Docker命令来构建和运行容器。 使用Docker Compose来定义和管理多个容器组…...
公开数据集网站分享
参考链接:常用的医学组织切片细胞图像数据集_细胞分割数据集-CSDN博客文章浏览阅读1.3w次,点赞32次,收藏133次。乳腺癌细胞图像数据集、血细胞图像数据集、HE染色切片、疟疾细胞图像图像识别、分类、分割_细胞分割数据集https://blog.csdn.ne…...
实验OSPF路由协议(课内实验)
实验1:OSPF路由协议 实验目的及要求: 通过实验,能够理解链路状态型路由协议OSPF协议的工作原理,掌握如何实现单区域 OSPFv2配置指令,能够熟练的应用各种OSPF协议相关的配置指令完善网络设计。掌握验证OSPFv2网络连接…...
GPU Puzzles讲解(一)
GPU-Puzzles项目可以让你学习到GPU编程和cuda核心并行编程的概念,通过一个个小问题让你理解cuda的编程和调用,创建共享显存空间,实现卷积和矩阵乘法等,通过每个小问题之后还会奖励一个狗狗小视频😁 下面是项目的仓库&…...
滚雪球学Oracle[1.3讲]:内存与进程架构
全文目录: 前言一、SGA的深度解析1.1 SGA的作用与构成SGA的大小与调整 1.2 数据库缓冲区缓存(DB Cache)DB Cache的工作原理案例演示:调整DB Cache的大小 1.3 共享池(Shared Pool)的构成与调优共享池的组成部…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
