Python知识点:结合Python工具,如何使用TfidfVectorizer进行文本特征提取
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!
如何使用Python的TfidfVectorizer进行文本特征提取
在自然语言处理(NLP)中,特征提取是将原始文本数据转换为可以被机器学习算法处理的数值型特征的过程。TF-IDF(Term Frequency-Inverse Document Frequency)是一种广泛使用的特征提取方法,它能够反映词语在文档集合中的重要性。在Python中,我们可以使用sklearn库中的TfidfVectorizer来实现TF-IDF特征提取。本文将介绍如何使用TfidfVectorizer进行文本特征提取。
安装sklearn
如果你还没有安装sklearn库,可以通过以下命令进行安装:
pip install scikit-learn
基本使用
TfidfVectorizer是sklearn.feature_extraction.text模块中的一个类,它可以将文本文档集合转换为TF-IDF特征矩阵。
示例代码
from sklearn.feature_extraction.text import TfidfVectorizer# 定义一组文档
documents = ["I have a pen","I have an apple","Apple pen, Apple pen","Pen Pineapple, Apple Pen"
]# 创建TfidfVectorizer对象
tfidf_vectorizer = TfidfVectorizer()# 训练TfidfVectorizer对象,并将文档转换为TF-IDF特征矩阵
tfidf_matrix = tfidf_vectorizer.fit_transform(documents)# 查看特征词汇
print(tfidf_vectorizer.get_feature_names_out())# 查看TF-IDF矩阵
print(tfidf_matrix.toarray())
参数详解
TfidfVectorizer有许多参数可以定制,以下是一些常用的参数:
stop_words: 停用词集合,用于过滤掉无意义的常见词。max_df: 过滤掉在超过指定比例的文档中出现的词汇。min_df: 过滤掉在少于指定比例的文档中出现的词汇。ngram_range: 设定词汇的n-gram范围,例如(1, 2)表示提取单字和双字词组。token_pattern: 用于分词的正则表达式。
示例:使用参数
# 定义一组文档
documents = ["I have a pen","I have an apple","Apple pen, Apple pen","Pen Pineapple, Apple Pen"
]# 创建TfidfVectorizer对象,并设置参数
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_df=0.5, min_df=2, ngram_range=(1, 2))# 训练TfidfVectorizer对象,并将文档转换为TF-IDF特征矩阵
tfidf_matrix = tfidf_vectorizer.fit_transform(documents)# 查看特征词汇
print(tfidf_vectorizer.get_feature_names_out())# 查看TF-IDF矩阵
print(tfidf_matrix.toarray())
实战应用
TF-IDF特征提取在文本分类、聚类和相似度计算等任务中都有广泛的应用。例如,你可以使用TF-IDF特征进行文档聚类,找出相似的文档;或者在推荐系统中,通过计算文档之间的TF-IDF相似度来推荐内容。
总结
TfidfVectorizer是一个强大的工具,可以帮助你在NLP项目中进行有效的文本特征提取。通过调整不同的参数,你可以定制特征提取过程以满足特定的需求。无论你是进行学术研究还是工业应用,TF-IDF都是一个值得尝试的方法。
希望这篇博文能帮助你理解如何使用TfidfVectorizer进行文本特征提取!如果你有任何问题或需要进一步的帮助,请随时提问。
最后,说一个好消息,如果你正苦于毕业设计,点击下面的卡片call我,赠送定制版的开题报告和任务书,先到先得!过期不候!
相关文章:
Python知识点:结合Python工具,如何使用TfidfVectorizer进行文本特征提取
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候! 如何使用Python的TfidfVectorizer进行文本特征提取 在自然语言处理(…...
Diffusion models(扩散模型) 是怎么工作的
前言 给一个提示词, Midjourney, Stable Diffusion 和 DALL-E 可以生成很好看的图片,那么它们是怎么工作的呢?它们都用了 Diffusion models(扩散模型) 这项技术。 Diffusion models 正在成为生命科学等领域的一项尖端技术&…...
查找回收站里隐藏的文件
在Windows里,每个磁盘分区都有一个隐藏的回收站Recycle, 回收站里保存着用户删除的文件、图片、视频等数据,比如,C盘的回收站为C:\RECYCLE.BIN\,D盘的的回收站为D:\RECYCLE.BIN\,E盘的的回收站为E:\RECYCLE…...
[运维]2.elasticsearch-svc连接问题
Serverless 与容器决战在即?有了弹性伸缩就不一样了 - 阿里云云原生 - 博客园 当我部署好elasticsearch的服务后,由于个人习惯,一般服务会在name里带上svc,所以我elasticsearch服务的名字是elasticsearch-svc: [root…...
Ajax面试题:(第一天)
目录 1.说一下网络模型 2.在浏览器地址栏键入URL,按下回车之后会经历以下流程: 3.什么是三次握手和四次挥手? 4.http协议和https协议的区别 1.说一下网络模型 注:各层含义按自己理解即可 2.在浏览器地址栏键入URL,…...
数据仓库拉链表
数仓拉链表是数据仓库中常用的一种数据结构,用于记录维度表中某个属性的历史变化情况。在实际应用中,数仓拉链表可以帮助企业更好地进行数据分析和决策。 数仓拉链表(Slowly Changing Dimension, SCD)是一种用于处理维表中数据变化…...
【JVM】实战篇
1、内存调优 1.1 内存溢出和内存泄漏 内存泄漏(memory leak):在Java中如果不再使用一个对象,但是该对象依然在GC ROOT的引用链上,这个对象就不会被垃圾回收器回收,这种情况就称之为内存泄漏。 内存泄漏绝…...
2024年9月30日--10月6日(ue5肉鸽结束)
按照月计划,本周把ue肉鸽游戏完成,然后进行ue5太阳系 , 剩余14节,218分钟,如果按照10分钟的视频教程1小时进行完的话,则需要22小时,分布在10月2日-10月6日之间,每天44分钟的视频教程…...
【Python游戏开发】贪吃蛇游戏demo
准备步骤 项目开发使用【Mu 编辑器】 1.新建项目,并导入游戏图片 游戏编写 1.创建场景 SIZE 15 # 每个格子的大小 WIDTH SIZE * 30 # 游戏场景总宽度 HEIGHT SIZE * 30 # 游戏场景总高度def draw():screen…...
pytorch张量基础
引言张量的基础知识 张量的概念张量的属性张量的创建张量的操作 基本运算索引和切片形状变换自动微分 基本概念停止梯度传播张量的设备管理 检查和移动张量CUDA 张量高级操作 张量的视图广播机制分块和拼接张量的复制内存优化和管理 稀疏张量内存释放应用实例 线性回归神经网络…...
深入解析LlamaIndex Workflows【下篇】:实现ReAct模式AI智能体的新方法
之前我们介绍了来自LLM开发框架LlamaIndex的新特性:Workflows,一种事件驱动、用于构建复杂AI工作流应用的新方法(参考:[深入解析LlamaIndex Workflows:构建复杂RAG与智能体工作流的新利器【上篇】]。在本篇中ÿ…...
要在 Git Bash 中使用 `tree` 命令,下载并手动安装 `tree`。
0、git bash 安装 git(安装,常用命令,分支操作,gitee,IDEA集成git,IDEA集成gitee,IDEA集成github,远程仓库操作) 1、下载并手动安装 tree 下载 tree.exe 从 tree for Windows 官方站点 下载 tree 的 Windows 可执行文件。tree for Window:https://gnuwin32.source…...
Linux的基本指令(1)
前提: a:博主是在云服务器上进行操作的 b:windows上普通文件在Linux中也叫作普通文件,但是windows上的文件夹,在Linux中叫作目录 c:文件 文件内容 文件属性(创建时间,修改时间,…...
JavaEE之多线程进阶-面试问题
一.常见的锁策略 锁策略不是指某一个具体的锁,所有的锁都可以往这些锁策略中套 1.悲观锁与乐观锁 预测所冲突的概率是否高,悲观锁为预测锁冲突的概率较高,乐观锁为预测锁冲突的概率更低。 2.重量级锁和轻量级锁 从加锁的开销角度判断&am…...
费曼学习法没有输出对象怎么办?
费曼学习法并不需要输出对象。费曼学习法的核心在于通过将所学知识以简明易懂的方式解释给自己听,从而加深对知识的理解和记忆。这种方法强调的是理解和反思的过程,而不是简单地通过输出(如向他人解释)来检验学习效果。费曼学…...
Hive优化操作(二)
Hive 数据倾斜优化 在使用 Hive 进行大数据处理时,数据倾斜是一个常见的问题。本文将详细介绍数据倾斜的概念、表现、常见场景及其解决方案。 1. 什么是数据倾斜? 数据倾斜是指由于数据分布不均匀,导致大量数据集中到某个节点或任务中&…...
销冠的至高艺术:让自己不像销售
若想在销售领域脱颖而出,首先是让自己超越传统销售的框架,成为客户心中不可多得的行业顾问与信赖源泉。这不仅是身份的蜕变,更是影响力与信任度质的飞跃。 销冠对客户只吸引不骚扰,不讲自己卖什么,只讲自己能解决什么…...
Hive数仓操作(十一)
一、Hive 日期函数 在日常的数据处理工作中,日期和时间的处理是非常常见的操作。Hive 提供了丰富的日期函数,能够帮助我们方便地进行日期和时间的计算。本文将详细介绍 Hive 中常用的日期函数,并通过具体的示例展示其用法和结果。 1. 获取当…...
C语言初步介绍(初学者,大学生)【上】
1.C语⾔是什么? ⼈和⼈交流使⽤的是⾃然语⾔,如:汉语、英语、⽇语 那⼈和计算机是怎么交流的呢?使⽤ 计算机语⾔ 。 ⽬前已知已经有上千种计算机语⾔,⼈们是通过计算机语⾔写的程序,给计算机下达指令&am…...
陈文自媒体:现在的房价,已经跌到7年前!
今年的国庆北上广深都放开了政策,很多人都放弃旅游去看房了,现在的全民都有一个基本意识,现在的房子已经到了谷底,从各大政策就可以看出来,稍微有点钱的可以出手买房了。 昨天我哥跟我说,现在xx地方的房子…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
