当前位置: 首页 > news >正文

代数结构基础 - 离散数学系列(八)

目录

1. 群(Group)

群的定义

群的示例

2. 环(Ring)

环的定义

环的示例

3. 域(Field)

域的定义

域的示例

域在密码学中的应用

4. 实际应用场景

1. 对称性与加密

2. 误差检测与纠正

3. 数据编码与纠错

5. 例题与练习

例题1:验证群的性质

例题2:有限域中的加法与乘法

练习题

总结


引言

代数结构是离散数学中的重要组成部分,主要研究集合上的运算及其满足的性质。代数结构在计算机科学、密码学和工程中有着广泛应用,尤其是在对称性、加密算法以及数据编码中起到重要作用。本篇文章将介绍代数结构的基本概念,包括群、环和域。我们将结合具体的例子来帮助读者理解这些抽象的概念。

1. 群(Group)

群的定义

是一个带有二元运算的代数结构,通常记作 (G, *),其中 G 是一个非空集合,* 是定义在 G 上的二元运算。群需要满足以下四个性质:

  1. 封闭性:对于任意的 a, b ∈ Ga * b ∈ G

  2. 结合性:对于任意的 a, b, c ∈ G(a * b) * c = a * (b * c)

  3. 单位元:存在一个元素 e ∈ G,使得对于任意的 a ∈ G,有 a * e = e * a = a

  4. 逆元:对于每个 a ∈ G,存在一个元素 b ∈ G,使得 a * b = b * a = e,其中 e 是单位元。

群的示例

  • 整数加法群

    • 集合 G 为所有整数,运算 * 为加法。

    • 单位元是 0,每个整数的逆元是它的相反数。

    • 例如,a = 5,其逆元是 -5,因为 5 + (-5) = 0

  • 对称群

    • 对称群包含对某一几何对象的所有对称操作,例如旋转和反射。对称群在计算机图形学和密码学中有重要应用。

2. 环(Ring)

环的定义

(Ring)是一个包含两个二元运算的代数结构,通常记作 (R, +, *),其中 R 是一个非空集合,+* 分别是定义在 R 上的加法和乘法运算。环需要满足以下性质:

  1. 加法群:集合 R 在运算 + 下构成一个交换群,满足封闭性、结合性、存在单位元和逆元,并且加法是交换的。

  2. 乘法封闭性和结合性:对于任意的 a, b, c ∈ Ra * b ∈ R,且 (a * b) * c = a * (b * c)

  3. 分配律:乘法对加法满足左分配律和右分配律,即对于任意的 a, b, c ∈ R,有 a * (b + c) = (a * b) + (a * c)(a + b) * c = (a * c) + (b * c)

环的示例

  • 整数集上的加法和乘法

    • 集合 R 为所有整数,运算 + 为加法,* 为乘法。

    • 整数集 Z 构成一个环,满足封闭性、结合性和分配律。

  • 多项式环

    • 多项式环是所有形式为 a_n * x^n + ... + a_1 * x + a_0 的多项式的集合,其中 a_i 是系数。

    • 加法和乘法在多项式集合上定义,使其构成一个环。

3. 域(Field)

域的定义

(Field)是一个既包含加法又包含乘法的代数结构,满足环的所有性质,并且乘法在非零元素上也是可逆的。通常记作 (F, +, *),其中 F 是一个非空集合,+* 是定义在 F 上的运算。域需要满足以下性质:

  1. 加法交换群:集合 F 在加法 + 下构成一个交换群。

  2. 乘法交换群(除零元):集合 F 在乘法 * 下(不包括 0)构成一个交换群。

  3. 分配律:乘法对加法满足分配律。

域的示例

  • 有理数集

    • 集合 F 为所有有理数,运算 + 为加法,* 为乘法。

    • 有理数集构成一个域,因为加法和乘法都满足群的性质,且乘法在非零元素上是可逆的。

  • 实数集和复数集

    • 实数和复数在加法和乘法下也构成域,广泛用于信号处理、控制系统和工程计算。

域在密码学中的应用

在现代密码学中,域被广泛应用于加密和解密过程。例如,有限域(Galois Field) 在 AES 加密算法中起着关键作用。有限域通常表示为 GF(p),其中 p 是素数,表示元素的数量。有限域具有有限个元素,并且在这些元素上定义的加法和乘法均满足域的性质。

4. 实际应用场景

1. 对称性与加密

在密码学中,群的对称性用于构造加密算法,例如 DES 和 AES 中的某些操作可以用群的概念来描述。对称性操作使得密码难以破解,从而提高了加密的安全性。

2. 误差检测与纠正

环和域在编码理论中有重要应用。例如,循环冗余校验(CRC) 是一种基于多项式环的错误检测方法,可以有效检测数据传输中的错误。域的结构也被用于设计能够纠正数据错误的编码,如里德-所罗门编码(Reed-Solomon Code)

3. 数据编码与纠错

域在数据编码中用于构造强大的纠错码,使得在数据传输过程中,即使发生了一些错误,也能恢复原始数据。这些技术广泛应用于通信和存储系统中,以提高数据的可靠性。

5. 例题与练习

例题1:验证群的性质

给定集合 G = {0, 1, 2, 3},运算 * 定义为模 4 加法,即 a * b = (a + b) mod 4。验证 (G, *) 是否构成一个群。

解答

  • 封闭性:对于任意的 a, b ∈ G(a + b) mod 4 ∈ G,满足封闭性。

  • 结合性:加法在整数集上满足结合性,因此在模 4 加法下也满足。

  • 单位元:单位元是 0,因为对于任意 a ∈ G(a + 0) mod 4 = a

  • 逆元:对于每个 a ∈ G,存在一个元素 b ∈ G,使得 (a + b) mod 4 = 0。 因此 (G, *) 构成一个群。

例题2:有限域中的加法与乘法

在有限域 GF(5) 中,计算 3 + 43 * 4

解答

  • 加法3 + 4 = 7,在 GF(5) 中,7 mod 5 = 2,所以 3 + 4 = 2

  • 乘法3 * 4 = 12,在 GF(5) 中,12 mod 5 = 2,所以 3 * 4 = 2

练习题

  1. 验证集合 Z(所有整数)在加法和乘法下是否构成环。

  2. 在域 GF(7) 中,计算 5 * 3 的结果。

总结

本文介绍了代数结构中的基本概念,包括群、环和域,以及它们在计算机科学和工程中的应用。

相关文章:

代数结构基础 - 离散数学系列(八)

目录 1. 群(Group) 群的定义 群的示例 2. 环(Ring) 环的定义 环的示例 3. 域(Field) 域的定义 域的示例 域在密码学中的应用 4. 实际应用场景 1. 对称性与加密 2. 误差检测与纠正 3. 数据编码…...

函数的arguments为什么不是数组?如何转化为数组?

因为arguments本身并不能调用数组方法,它是一个另外一种对象类型,只不过属性从0开始排,依次为0 1 2…最后还有callee和length属性,我们也把这样的对象成为类数组。 常见的类数组还有: 1.用getElementsByTagName/Class…...

Java之反射

目录 反射 定义 主要用途 反射相关的类 Class类中【获得类相关方法】 Class类中【获得类中属性相关的方法】 Class类中【获得类中注解相关的方法】 Class类中【获得类中构造器相关的方法】 Class类中【获得类中方法相关的方法】 获得Class对象 代码示例1 代码示例…...

3dsMax添加天空盒

点击渲染,环境 , 点击位图 找到要设置的天空HDR,可以使用HDR(EXR)贴图 一个可以下载HDR贴图的网站 https://polyhaven.com/hdris在渲染的时候不要使用使用微软输入法,3dsmax会卡死, 在渲染的时候不要使用使用微软…...

C语言的类型提升机制

概念 在C语言中,整数类型按照其大小可以分为以下几类(从小到大): charshortintlonglong long 当在表达式中涉及这些类型的混合运算时,较小的类型会被提升为较大的类型。具体规则如下: ①char 和 short …...

Pandas和Seaborn数据可视化

Pandas数据可视化 学习目标 本章内容不需要理解和记忆,重在【查表】! 知道数据可视化的重要性和必要性知道如何使用Matplotlib的常用图表API能够找到Seaborn的绘图API 1 Pandas数据可视化 一图胜千言,人是一个视觉敏感的动物,大…...

爬虫(Python版本)

1.爬虫的法律问题 爬虫技术(Web Scraping)指通过程序自动访问网页并提取其中的数据。在使用爬虫的过程中,涉及到一些法律法规和合规性问题。 常见法律风险 ①未经授权的访问:很多网站对爬虫行为设置了限制。如果未获得授权就进行…...

【分布式训练 debug】VS Code Debug 技巧:launch.json实用参数

VS Code Debug技巧:launch.json实用参数 在使用Visual Studio Code (VS Code)进行调试时,launch.json文件是一个强大的工具,它允许你自定义调试会话。以下是一些实用的参数,可以帮助你更有效地调试Python代码。 1. 调试第三方库…...

pycharm连接linux服务器需要提前安装ssh服务

在 Debian 或 Ubuntu 系统上,使用 APT: bash复制代码 sudo apt-get install openssh-server 在基于 RPM 的系统如 CentOS 或 RHEL 上,使用 YUM 或 DNF: bash复制代码 sudo yum install openssh-server 或对于较新的 RHEL/Cent…...

通信工程学习:什么是LAN局域网、MAN城域网、WAN广域网

LAN局域网、MAN城域网、WAN广域网 LAN(Local Area Network,局域网)、MAN(Metropolitan Area Network,城域网)和WAN(Wide Area Network,广域网)是计算机网络中根据覆盖范围…...

LeetCode热题100速通

一丶哈希 1、两数之和(简单) 给定一个整数数组 n u m s nums nums 和一个整数目标值 t a r g e t target target,请你在该数组中找出 和为目标值 t a r g e t target target 的那 两个 整数,并返回它们的数组下标。 你可以假设…...

Python代码编写KDJ指标

KDJ指标由三部分组成:K值、D值、J值,主要用于分析股票市场的超买超卖状态及股价波动的趋势。博主记录学习编写KDJ指标线 import numpy as npdef calculate_kdj(close_prices, n9, m13, m23):"""计算KDJ指标:param close_prices: 收盘价序…...

传统少数民族物品检测系统源码分享

传统少数民族物品检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer…...

深度学习中的迁移学习:预训练模型微调与实践

深度学习中的迁移学习:预训练模型微调与实践 目录 💡 迁移学习的核心概念🧠 预训练模型的使用:ResNet与VGG的微调🏥 迁移学习在医学图像分析中的应用🔄 实践中的迁移学习微调过程 1. 💡 迁移学…...

原生input实现时间选择器用法

2024.10.08今天我学习了如何用原生的input&#xff0c;实现时间选择器用法&#xff0c;效果如下&#xff1a; 代码如下&#xff1a; <div><input id"yf_start" type"text"> </div><script>$(#yf_start).datepicker({language: zh…...

对象的概念

对象是编程中一个重要的概念&#xff0c;尤其在面向对象编程&#xff08;OOP&#xff09;中更为核心。简单来说&#xff0c;对象是一种数据结构&#xff0c;它可以存储相关的数据和功能。以下是关于对象的详细描述&#xff1a; 1. 对象的定义 对象是属性&#xff08;数据&…...

ARIMA|基于自回归差分移动平均模型时间序列预测

目录 一、基本内容介绍&#xff1a; 二、实际运行效果&#xff1a; 三、原理介绍&#xff1a; 四、完整程序下载&#xff1a; 一、基本内容介绍&#xff1a; 本代码基于Matlab平台&#xff0c;通过ARIMA模型对时间序列数据进行预测。程序以通过调试&#xff0c;解压后打开…...

sqli-labs靶场第三关less-3

sqli-labs靶场第三关less-3 1、确定注入点 http://192.168.128.3/sq/Less-3/?id1 http://192.168.128.3/sq/Less-3/?id2 有不同回显&#xff0c;判断可能存在注入&#xff0c; 2、判断注入类型 输入 http://192.168.128.3/sq/Less-3/?id1 and 11 http://192.168.128.3/sq/L…...

泡沫背后:人工智能的虚幻与现实

人工智能的盛世与泡沫 现今&#xff0c;人工智能热潮席卷科技行业&#xff0c;投资者、创业者和用户都被其光环吸引。然而&#xff0c;深入探讨这种现象&#xff0c;人工智能的泡沫正在形成&#xff0c;乃至具备崩溃的潜质。我们看到的&#xff0c;无非是一场由资本推动的狂欢…...

旅游管理智能化:SpringBoot框架的应用

第一章 绪论 1.1 研究现状 时代的发展&#xff0c;我们迎来了数字化信息时代&#xff0c;它正在渐渐的改变着人们的工作、学习以及娱乐方式。计算机网络&#xff0c;Internet扮演着越来越重要的角色&#xff0c;人们已经离不开网络了&#xff0c;大量的图片、文字、视频冲击着我…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

篇章二 论坛系统——系统设计

目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...

Python学习(8) ----- Python的类与对象

Python 中的类&#xff08;Class&#xff09;与对象&#xff08;Object&#xff09;是面向对象编程&#xff08;OOP&#xff09;的核心。我们可以通过“类是模板&#xff0c;对象是实例”来理解它们的关系。 &#x1f9f1; 一句话理解&#xff1a; 类就像“图纸”&#xff0c;对…...

欢乐熊大话蓝牙知识17:多连接 BLE 怎么设计服务不会乱?分层思维来救场!

多连接 BLE 怎么设计服务不会乱&#xff1f;分层思维来救场&#xff01; 作者按&#xff1a; 你是不是也遇到过 BLE 多连接时&#xff0c;调试现场像网吧“掉线风暴”&#xff1f; 温度传感器连上了&#xff0c;心率带丢了&#xff1b;一边 OTA 更新&#xff0c;一边通知卡壳。…...

uniapp获取当前位置和经纬度信息

1.1. 获取当前位置和经纬度信息&#xff08;需要配置高的SDK&#xff09; 调用uni-app官方API中的uni.chooseLocation()&#xff0c;即打开地图选择位置。 <button click"getAddress">获取定位</button> const getAddress () > {uni.chooseLocatio…...

若依项目部署--传统架构--未完待续

若依项目介绍 项目源码获取 #Git工具下载 dnf -y install git #若依项目获取 git clone https://gitee.com/y_project/RuoYi-Vue.git项目背景 随着企业信息化需求的增加&#xff0c;传统开发模式存在效率低&#xff0c;重复劳动多等问题。若依项目通过整合主流技术框架&…...

git引用概念(git reference,git ref)(简化对复杂SHA-1哈希值的管理)(分支引用、标签引用、HEAD引用、远程引用、特殊引用)

文章目录 **引用的本质**1. **引用是文件**2. **引用的简化作用** **引用的类型**1. **分支引用&#xff08;Branch References&#xff09;**2. **标签引用&#xff08;Tag References&#xff09;**3. **HEAD 引用**4. **远程引用&#xff08;Remote References&#xff09;*…...