代数结构基础 - 离散数学系列(八)
目录
1. 群(Group)
群的定义
群的示例
2. 环(Ring)
环的定义
环的示例
3. 域(Field)
域的定义
域的示例
域在密码学中的应用
4. 实际应用场景
1. 对称性与加密
2. 误差检测与纠正
3. 数据编码与纠错
5. 例题与练习
例题1:验证群的性质
例题2:有限域中的加法与乘法
练习题
总结
引言
代数结构是离散数学中的重要组成部分,主要研究集合上的运算及其满足的性质。代数结构在计算机科学、密码学和工程中有着广泛应用,尤其是在对称性、加密算法以及数据编码中起到重要作用。本篇文章将介绍代数结构的基本概念,包括群、环和域。我们将结合具体的例子来帮助读者理解这些抽象的概念。
1. 群(Group)
群的定义
群是一个带有二元运算的代数结构,通常记作 (G, *),其中 G 是一个非空集合,* 是定义在 G 上的二元运算。群需要满足以下四个性质:
-
封闭性:对于任意的
a, b ∈ G,a * b ∈ G。 -
结合性:对于任意的
a, b, c ∈ G,(a * b) * c = a * (b * c)。 -
单位元:存在一个元素
e ∈ G,使得对于任意的a ∈ G,有a * e = e * a = a。 -
逆元:对于每个
a ∈ G,存在一个元素b ∈ G,使得a * b = b * a = e,其中e是单位元。
群的示例
-
整数加法群:
-
集合
G为所有整数,运算*为加法。 -
单位元是
0,每个整数的逆元是它的相反数。 -
例如,
a = 5,其逆元是-5,因为5 + (-5) = 0。
-
-
对称群:
-
对称群包含对某一几何对象的所有对称操作,例如旋转和反射。对称群在计算机图形学和密码学中有重要应用。
-
2. 环(Ring)
环的定义
环(Ring)是一个包含两个二元运算的代数结构,通常记作 (R, +, *),其中 R 是一个非空集合,+ 和 * 分别是定义在 R 上的加法和乘法运算。环需要满足以下性质:
-
加法群:集合
R在运算+下构成一个交换群,满足封闭性、结合性、存在单位元和逆元,并且加法是交换的。 -
乘法封闭性和结合性:对于任意的
a, b, c ∈ R,a * b ∈ R,且(a * b) * c = a * (b * c)。 -
分配律:乘法对加法满足左分配律和右分配律,即对于任意的
a, b, c ∈ R,有a * (b + c) = (a * b) + (a * c)和(a + b) * c = (a * c) + (b * c)。
环的示例
-
整数集上的加法和乘法:
-
集合
R为所有整数,运算+为加法,*为乘法。 -
整数集
Z构成一个环,满足封闭性、结合性和分配律。
-
-
多项式环:
-
多项式环是所有形式为
a_n * x^n + ... + a_1 * x + a_0的多项式的集合,其中a_i是系数。 -
加法和乘法在多项式集合上定义,使其构成一个环。
-
3. 域(Field)
域的定义
域(Field)是一个既包含加法又包含乘法的代数结构,满足环的所有性质,并且乘法在非零元素上也是可逆的。通常记作 (F, +, *),其中 F 是一个非空集合,+ 和 * 是定义在 F 上的运算。域需要满足以下性质:
-
加法交换群:集合
F在加法+下构成一个交换群。 -
乘法交换群(除零元):集合
F在乘法*下(不包括0)构成一个交换群。 -
分配律:乘法对加法满足分配律。
域的示例
-
有理数集:
-
集合
F为所有有理数,运算+为加法,*为乘法。 -
有理数集构成一个域,因为加法和乘法都满足群的性质,且乘法在非零元素上是可逆的。
-
-
实数集和复数集:
-
实数和复数在加法和乘法下也构成域,广泛用于信号处理、控制系统和工程计算。
-
域在密码学中的应用
在现代密码学中,域被广泛应用于加密和解密过程。例如,有限域(Galois Field) 在 AES 加密算法中起着关键作用。有限域通常表示为 GF(p),其中 p 是素数,表示元素的数量。有限域具有有限个元素,并且在这些元素上定义的加法和乘法均满足域的性质。
4. 实际应用场景
1. 对称性与加密
在密码学中,群的对称性用于构造加密算法,例如 DES 和 AES 中的某些操作可以用群的概念来描述。对称性操作使得密码难以破解,从而提高了加密的安全性。
2. 误差检测与纠正
环和域在编码理论中有重要应用。例如,循环冗余校验(CRC) 是一种基于多项式环的错误检测方法,可以有效检测数据传输中的错误。域的结构也被用于设计能够纠正数据错误的编码,如里德-所罗门编码(Reed-Solomon Code)。
3. 数据编码与纠错
域在数据编码中用于构造强大的纠错码,使得在数据传输过程中,即使发生了一些错误,也能恢复原始数据。这些技术广泛应用于通信和存储系统中,以提高数据的可靠性。
5. 例题与练习
例题1:验证群的性质
给定集合 G = {0, 1, 2, 3},运算 * 定义为模 4 加法,即 a * b = (a + b) mod 4。验证 (G, *) 是否构成一个群。
解答:
-
封闭性:对于任意的
a, b ∈ G,(a + b) mod 4 ∈ G,满足封闭性。 -
结合性:加法在整数集上满足结合性,因此在模 4 加法下也满足。
-
单位元:单位元是
0,因为对于任意a ∈ G,(a + 0) mod 4 = a。 -
逆元:对于每个
a ∈ G,存在一个元素b ∈ G,使得(a + b) mod 4 = 0。 因此(G, *)构成一个群。
例题2:有限域中的加法与乘法
在有限域 GF(5) 中,计算 3 + 4 和 3 * 4。
解答:
-
加法:
3 + 4 = 7,在GF(5)中,7 mod 5 = 2,所以3 + 4 = 2。 -
乘法:
3 * 4 = 12,在GF(5)中,12 mod 5 = 2,所以3 * 4 = 2。
练习题
-
验证集合
Z(所有整数)在加法和乘法下是否构成环。 -
在域
GF(7)中,计算5 * 3的结果。
总结
本文介绍了代数结构中的基本概念,包括群、环和域,以及它们在计算机科学和工程中的应用。

相关文章:
代数结构基础 - 离散数学系列(八)
目录 1. 群(Group) 群的定义 群的示例 2. 环(Ring) 环的定义 环的示例 3. 域(Field) 域的定义 域的示例 域在密码学中的应用 4. 实际应用场景 1. 对称性与加密 2. 误差检测与纠正 3. 数据编码…...
函数的arguments为什么不是数组?如何转化为数组?
因为arguments本身并不能调用数组方法,它是一个另外一种对象类型,只不过属性从0开始排,依次为0 1 2…最后还有callee和length属性,我们也把这样的对象成为类数组。 常见的类数组还有: 1.用getElementsByTagName/Class…...
Java之反射
目录 反射 定义 主要用途 反射相关的类 Class类中【获得类相关方法】 Class类中【获得类中属性相关的方法】 Class类中【获得类中注解相关的方法】 Class类中【获得类中构造器相关的方法】 Class类中【获得类中方法相关的方法】 获得Class对象 代码示例1 代码示例…...
3dsMax添加天空盒
点击渲染,环境 , 点击位图 找到要设置的天空HDR,可以使用HDR(EXR)贴图 一个可以下载HDR贴图的网站 https://polyhaven.com/hdris在渲染的时候不要使用使用微软输入法,3dsmax会卡死, 在渲染的时候不要使用使用微软…...
C语言的类型提升机制
概念 在C语言中,整数类型按照其大小可以分为以下几类(从小到大): charshortintlonglong long 当在表达式中涉及这些类型的混合运算时,较小的类型会被提升为较大的类型。具体规则如下: ①char 和 short …...
Pandas和Seaborn数据可视化
Pandas数据可视化 学习目标 本章内容不需要理解和记忆,重在【查表】! 知道数据可视化的重要性和必要性知道如何使用Matplotlib的常用图表API能够找到Seaborn的绘图API 1 Pandas数据可视化 一图胜千言,人是一个视觉敏感的动物,大…...
爬虫(Python版本)
1.爬虫的法律问题 爬虫技术(Web Scraping)指通过程序自动访问网页并提取其中的数据。在使用爬虫的过程中,涉及到一些法律法规和合规性问题。 常见法律风险 ①未经授权的访问:很多网站对爬虫行为设置了限制。如果未获得授权就进行…...
【分布式训练 debug】VS Code Debug 技巧:launch.json实用参数
VS Code Debug技巧:launch.json实用参数 在使用Visual Studio Code (VS Code)进行调试时,launch.json文件是一个强大的工具,它允许你自定义调试会话。以下是一些实用的参数,可以帮助你更有效地调试Python代码。 1. 调试第三方库…...
pycharm连接linux服务器需要提前安装ssh服务
在 Debian 或 Ubuntu 系统上,使用 APT: bash复制代码 sudo apt-get install openssh-server 在基于 RPM 的系统如 CentOS 或 RHEL 上,使用 YUM 或 DNF: bash复制代码 sudo yum install openssh-server 或对于较新的 RHEL/Cent…...
通信工程学习:什么是LAN局域网、MAN城域网、WAN广域网
LAN局域网、MAN城域网、WAN广域网 LAN(Local Area Network,局域网)、MAN(Metropolitan Area Network,城域网)和WAN(Wide Area Network,广域网)是计算机网络中根据覆盖范围…...
LeetCode热题100速通
一丶哈希 1、两数之和(简单) 给定一个整数数组 n u m s nums nums 和一个整数目标值 t a r g e t target target,请你在该数组中找出 和为目标值 t a r g e t target target 的那 两个 整数,并返回它们的数组下标。 你可以假设…...
Python代码编写KDJ指标
KDJ指标由三部分组成:K值、D值、J值,主要用于分析股票市场的超买超卖状态及股价波动的趋势。博主记录学习编写KDJ指标线 import numpy as npdef calculate_kdj(close_prices, n9, m13, m23):"""计算KDJ指标:param close_prices: 收盘价序…...
传统少数民族物品检测系统源码分享
传统少数民族物品检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer…...
深度学习中的迁移学习:预训练模型微调与实践
深度学习中的迁移学习:预训练模型微调与实践 目录 💡 迁移学习的核心概念🧠 预训练模型的使用:ResNet与VGG的微调🏥 迁移学习在医学图像分析中的应用🔄 实践中的迁移学习微调过程 1. 💡 迁移学…...
原生input实现时间选择器用法
2024.10.08今天我学习了如何用原生的input,实现时间选择器用法,效果如下: 代码如下: <div><input id"yf_start" type"text"> </div><script>$(#yf_start).datepicker({language: zh…...
对象的概念
对象是编程中一个重要的概念,尤其在面向对象编程(OOP)中更为核心。简单来说,对象是一种数据结构,它可以存储相关的数据和功能。以下是关于对象的详细描述: 1. 对象的定义 对象是属性(数据&…...
ARIMA|基于自回归差分移动平均模型时间序列预测
目录 一、基本内容介绍: 二、实际运行效果: 三、原理介绍: 四、完整程序下载: 一、基本内容介绍: 本代码基于Matlab平台,通过ARIMA模型对时间序列数据进行预测。程序以通过调试,解压后打开…...
sqli-labs靶场第三关less-3
sqli-labs靶场第三关less-3 1、确定注入点 http://192.168.128.3/sq/Less-3/?id1 http://192.168.128.3/sq/Less-3/?id2 有不同回显,判断可能存在注入, 2、判断注入类型 输入 http://192.168.128.3/sq/Less-3/?id1 and 11 http://192.168.128.3/sq/L…...
泡沫背后:人工智能的虚幻与现实
人工智能的盛世与泡沫 现今,人工智能热潮席卷科技行业,投资者、创业者和用户都被其光环吸引。然而,深入探讨这种现象,人工智能的泡沫正在形成,乃至具备崩溃的潜质。我们看到的,无非是一场由资本推动的狂欢…...
旅游管理智能化:SpringBoot框架的应用
第一章 绪论 1.1 研究现状 时代的发展,我们迎来了数字化信息时代,它正在渐渐的改变着人们的工作、学习以及娱乐方式。计算机网络,Internet扮演着越来越重要的角色,人们已经离不开网络了,大量的图片、文字、视频冲击着我…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
