基于模型预测控制(MPC)的微电网调度优化的研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
1.1 风力发电机
1.2 太阳能发电
1.3 微型燃气轮机
1.4 微电网其他结构
1.5 MPC模型预测控制
1.6 滚动优化
📚2 运行结果
🎉3 文献来源
🌈4 Matlab代码实现
💥1 概述
微电网的腾空出世对于国家能源体系和经济发展具有极其重要的意义。虽然在能源利用和电力运行等方面发挥着重要作用,但在规划设计、保护与控制等方面仍存在诸多问题需要解决[7-9]。在微电网的优化调度方面,微电网和传统微电网存在着较大的差异,主要有以下差异:微电网内分布式电源品类繁多,运行方式和运行特点各有不同,可再生能源的功率特性具有随机性和间歇性;构建优化目标函数需要从经济效益、环保效益、供电可靠性等角度进行思考;各分布式电源在不同运行模式下存在不同的调度策略l约束条件等,这些因素都大大深化了微电网的调度优化的复杂程度,给微电网系统的优化调度带来了一定的困难。因此,对微电网的优化调度研究是十分必要的,微电网作为协调分布式电源和大电网之间的重要桥梁,研究其优化调度有助于提高电力系统的经济性,改善电能质量,保证大电网和微电网之间的平稳运行,同时对实现节能减排也发挥重大的作用。微电网的优化调度作为微电网技术发展的重要研究方面,具有重要的理论价值。
风能是一种无公害的新能源,资源丰富,清洁可再生,可满足国家未来长远能源需求,因此受到世界上许多国家的重视。利用风力进行发电可以无需考虑环境污染和燃料等问题,有效减少对于化石能源的消耗,并且在适当地点发电时,其发电成本低于其他·发电机。风力发电作为一种绿色、健康的发电方式更是受到世界各国的开发和利用,吸引着国内外诸多专家和科研人员对绿色风力发电的探索145]。
1.1 风力发电机
风力发电机(Wind Turbine,WT)主要是采取风能—机械能—电能的模式进行发电,风力发电功率输出的流程如图2.1所示,主要是利用风速数据,经过风轮机模型、发电机模型最终得到输出的有功、无功功率,实现与电网之间的功率交换。
1.2 太阳能发电
太阳能作为可再生清洁能源一直以来受到人们的广泛关注,开发和利用太阳能技术也成为人们解决能源短缺和环境污染的重要选择,在能源供应中占据重要地位,同时,许多国家也将开发可在生能源定为发展本国的能源战略。目前,太阳能发电具有两种发电方式I7]:一种是光-热-电转换方式,另一种是光-电直接转化方式,而光伏发电(Photovoltaic cell,PV)就是后一种发电方式。光伏电池借助太阳光照的光伏效应,将太阳能通过交直流变换器转化为交直流电能以供负载,光伏发电系统是利用源自内部半导体接收到太阳光线的照射之后产生的光伏特效应,不过光伏发电系统对环境的依赖比较大,易于受到外部温度、日照光线强度等天气环境的影响,其系统结构组成如图2.2所示。
1.3 微型燃气轮机
微型燃气轮机(Microturbine,MT)属于燃气轮机门类之一,其单机发电额定功率范在30~250k W之间,发电效率普遍达到25%~30%,若采用冷热电联产方式时,能量利用率可达70%~90%。近年来随着能源与动力需求结构及环境变化等改变,微型燃气轮机备受关注,在我国具有相当可观的发展应用前景。微型燃气轮机燃料多以天然气、柴油为主,具有体积小重量轻、污染排放少、低燃料消耗率和低维修率等一系列先进技术特征,除了适用于分布式发电外,还可以用于并网发电、备用电站等。微型燃气轮机的系统主要由以下模块构成,如下图2.3所示。其工作原理是利用压缩机将空气进行压缩,通过将压缩后的气体与燃料发生氧化还原反应形成高压燃气,利用高压燃起做功产生机械能带动机组发电。
其他结构就不一一介绍。
1.4 微电网其他结构
1.5 MPC模型预测控制
模型预测控制(Model Predictive Control,MPC)是20世纪70年代发展起来的一类新型计算机控制算法6,是一种基于预测模型、滚动优化、反馈校正思维的闭环控制。该算法最早应用在工业实践中,意在解决多变量约束优化问题。随着工业生产的进一步发展,对控制系统提出了更高的要求,如具有高质量的控制性能,对模型要求不高及计算方便等,虽然从理论上说,鲁棒控制、最优控制和自适应控制也可以满足这些要求,但是这些方法通常对于模型精度要求较高,在这样的背景下﹐模型预测控制算法应运而生。同时,由于计算机技术和工业系统对于先进控制的高度需求,使得预测控制的应用范围日渐扩大,控制水平也日益提高,目前,预测控制已经成为工业领域应用最多的一种先进控制策略。具有对模型要求低、极强抗干扰能力等优点,能够很好的实现优化目标的跟踪及与约束条件的处理。
1.6 滚动优化
模型预测控制中的滚动优化是针对有限时域内的预测,同时受到外部干扰和模型不确定等因素的干扰,所以对系统目标函数优化求解后得到的向量解不能全部作用与系统,而应该将每个采样时刻的优化向量解中的第一个分量作用于系统,在下一个时刻,以新得到的测量值作为初始条件重新预测系统未来输出,得到新的优化向量解,在将新的优化向量解中的第一个分量作用于系统,以此循环往复下去直到永远。也就是说,模型预测控制是一个有限时域内的滚动优化,时间依次的往上递增,以每个时刻新的测量值来重新预测未来输出,并将新的优化向量解中的第一个分量作用与系统,以便得到下一时刻的测量值。这种有限时域的滚动优化策略对优化目标来说,虽然不能得到全局最优解,只能得到全局次优解,但是它顾及了时变、干扰等引起的不确定性,及时的进行弥补,始终把新的优化建立在实际的基础上,使控制保持实际上的最优。
📚2 运行结果
🎉3 文献来源
部分理论来源于网络,如有侵权请联系删除。
[1]石栋安. 基于MPC的微电网调度优化的研究[D].西安工业大学,2019.DOI:10.27391/d.cnki.gxagu.2019.000303.
🌈4 Matlab代码实现
相关文章:

基于模型预测控制(MPC)的微电网调度优化的研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

Postman接口测试之Mock快速入门
一、Mock简介 1.Mock定义 Mock是一种比较特殊的测试技巧,可以在没有依赖项的情况下进行接口或单元测试。通常情况下,Mock与其他方法的区别是,用于模拟代码依赖对象,并允许设置对应的期望值。简单一点来讲,就是Mock创建…...

分享一个国内可用的免费ChatGPT网站
背景 ChatGPT作为一种基于人工智能技术的自然语言处理工具,近期的热度直接沸腾🌋。 作为一个程序员,我也忍不住做了一个基于ChatGPT的网站,免费!免登陆!!国内可直接对话ChatGPT,也…...
15. 三数之和(Java)
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元组。 示例 …...

Navicat Premium 16安装教程
1.鼠标右击【Navicat Premium 16(64bit)】压缩包(win11及以上系统需先选择“显示更多选项”)选择【解压到 Navicat Premium 16(64bit)】。 2.打开解压后的文件夹,鼠标右击【setup】选择【以管理员身份运行】。 3.点击【下一步】。 4.选择【我…...

蓝桥杯刷题冲刺 | 倒计时8天
作者:指针不指南吗 专栏:蓝桥杯倒计时冲刺 🐾马上就要蓝桥杯了,最后的这几天尤为重要,不可懈怠哦🐾 文章目录1.三角形的面积2.图中点的层次1.三角形的面积 题目 链接: 三角形的面积 - 蓝桥云课 …...
四.JAVA基础面试题:重要知识
四.JAVA基础面试题:重要知识 1.为什么JAVA只有值传递 2.JAVA获取运行时类的四种方式 四.JAVA基础面试题:重要知识 1.为什么JAVA只有值传递 实参:传递给形参的实际参数。 形参:接受实参的参数。值传递:方法接受实参…...

某面试官分享经验:看求职者第一眼,开口说第一句话,面试结果就差不多定了,准确率高达90%以上...
我们以前分享过许多经验,但大多是站在打工人的视角上,今天给大家带来一个面试官的经验:1. 看求职者第一眼,开口说第一句话,面试结果就差不多定了,准确率高达90%以上。2. 绝不考八股文,如果问技术…...

Java开发 - 消息队列之RabbitMQ初体验
目录 前言 RabbitMQ 什么是RabbitMQ RabbitMQ特点 安装启动 RabbitMQ和Kafka的消息收发区别 RabbitMQ使用案例 添加依赖 添加配置 创建RabbitMQ配置类 RabbitMQ消息的发送 RabbitMQ消息的接收 测试 结语 前言 前一篇,我们学习了Kafka的基本使用&#…...

蓝桥杯入职项目(HTML + springBoot)
文章目录需要解决npm包安装axioshttp-servedebug开发下个阶段测试运行方式注意清理磁盘缓存问题解决HTML Web项目的结构通常是基于MVC(Model-View-Controller)模式设计的。下面是一般的项目结构:index.html:项目的入口文件&#x…...
【IAR工程】STM8S208RB基于ST标准库下按键检测
【IAR工程】STM8S208RB基于ST标准库下按键检测📍相关篇《【IAR工程】STM8S208RB基于ST标准库下GPIO点灯示例》🎈《【IAR工程】STM8S208RB基于ST标准库下EXTI外部中断》🔖基于ST STM8S/A标准外设库:STSW-STM8069,版本号:2.3.1&…...
【5】深度学习之Pytorch——如何使用张量处理文本数据集(语料库数据集)
在计算机领域,不断崛起的两个领域,一个是CV一个是NLP,下面我们可以探索一下深度学习在NLP的应用和特点。 深度学习在自然语言处理(NLP)领域有广泛的应用。以下是一些主要的应用和特点: 语音识别࿱…...

《Spring系列》第5章 refresh()
前言 Spring框架中最重要的肯定是IOC容器,那么其如何进行初始化,就是通过refresh()这个方法,无论是单独使用Spring框架,还是SpringBoot,最终都会通过执行到这个方法,那么下面会介绍一下这个方法 一、IOC容…...

ThreeJS-缩放、旋转(四)
代码: <template> <div id"three_div"> </div> </template> <script> import * as THREE from "three"; import {OrbitControls } from three/examples/jsm/controls/OrbitControls export default { name: &quo…...

数据更新 | CnOpenData法拍房数据
法拍房数据 一、数据简介 法拍房,即“法院拍卖房产”,是被法院强制执行拍卖的房屋 。当债务人(业主)无力履行借款合约或无法清偿债务时,而被债权人经司法程序向法院申请强制执行,将债务人名下房屋拍卖&…...

【Spring从成神到升仙系列 五】从根上剖析 Spring 循环依赖
👏作者简介:大家好,我是爱敲代码的小黄,独角兽企业的Java开发工程师,CSDN博客专家,阿里云专家博主📕系列专栏:Java设计模式、数据结构和算法、Kafka从入门到成神、Kafka从成神到升仙…...

设计模式之代理模式(C++)
作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 一、代理模式是什么? 代理模式是一种结构型的软件设计模式,在不改变原代码前提下,提供一个代理…...

c++11 标准模板(STL)(std::unordered_multimap)(三)
定义于头文件 <unordered_map> template< class Key, class T, class Hash std::hash<Key>, class KeyEqual std::equal_to<Key>, class Allocator std::allocator< std::pair<const Key, T> > > class unordered…...

Linux进程控制-2
紧接着上篇博客出发,我们接着来讲述Linux中进程控制的内容。 目录 1.等待 1.1具体操作 1.等待 进程等待主要的作用在于:父进程创建子进程之后,等待子进程退出,获取子进程的退出码,释放子进程的资源,避…...

快速排序算法
一:快速排序思想 假设我们现在对“6 1 2 7 9 3 4 5 10 8”这个10个数进行排序。首先在这个序列中随便找一个数作为基准数(不要被这个名词吓到了,就是一个用来参照的数,待会你就知道它用来做啥的了)。为了方便ÿ…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...

PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...

Canal环境搭建并实现和ES数据同步
作者:田超凡 日期:2025年6月7日 Canal安装,启动端口11111、8082: 安装canal-deployer服务端: https://github.com/alibaba/canal/releases/1.1.7/canal.deployer-1.1.7.tar.gz cd /opt/homebrew/etc mkdir canal…...

aurora与pcie的数据高速传输
设备:zynq7100; 开发环境:window; vivado版本:2021.1; 引言 之前在前面两章已经介绍了aurora读写DDR,xdma读写ddr实验。这次我们做一个大工程,pc通过pcie传输给fpga,fpga再通过aur…...