当前位置: 首页 > news >正文

Halcon 3D应用 - 胶路提取

1. 需求

本文基于某手环(拆机打磨处理)做的验证性工作,为了项目保密性,只截取部分数据进行测试。
这里使用的是海康3D线激光轮廓相机+直线电机的方式进行的高度数据采集,我们拿到的是高度图+亮度图数据。
提取手环上的胶路信息,检测胶路的胶宽、胶高、断胶等信息。

2.实现思路

  • 扫描没有涂胶水的手环作为模板数据,包含高度图+亮度图;
  • 扫描带胶水的手环作为被测数据,包含高度图+亮度图;
  • 分割模板数据高度图中一个公共部分作为匹配模板;
  • 高度图转点云图,利用模板点云信息,和被测数据的点云进行匹配靠模;
  • 匹配后的点云转高度图;
  • 高度图差分,只保留胶路数据;
  • 进行胶路分析。

3.图像格式分析

3.1高度图

海康相机返回的高度图是tiff格式,具体含义如下:

  • 图像高:直线电机移动中会触发拍照,每拍一次生成一个轮廓,高度对应了本次扫描拍摄的轮廓数。每行的间隔对应了直线电机的触发拍照两次间隔移动的距离。
  • 图像宽:和相机的X轴轮廓点数+X轴采样间隔有关,注意这里不等于轮廓点数,需要调节合适的参数,保证图像的行间隔和列间隔实际距离一致。
  • 像素值:代表高度信息,单位um。

本次测试调节的每个像素宽高都为40um。

3.2亮度图

最终提取的胶路,可以在亮度图上进行对比查看。
亮度图还可以进行缺陷检测、2D匹配定位等功能,但注意本验证中,亮度图不能用来匹配,因为手环放置的位姿可能会出现倾斜透视,需转到点云上进行3D位姿匹配。

4.代码实现

4.1 胶水和无胶水图像信息

无胶水高度图:
在这里插入图片描述
无胶水亮度图:
在这里插入图片描述
带胶水高度图:
在这里插入图片描述
带胶水亮度图:
在这里插入图片描述

4.2 读取数据

read_image(HeightImg_no_glue, height_img_no_glue_path)
read_image (LumImage_no_glue, lum_img_no_glue_path)
read_image(HeightImg_glue, height_img_glue_path)
read_image (LumImage_glue, lum_img_glue_path)get_image_type (HeightImg_no_glue, ImgType) //海康是uint2
get_image_size (LumImage_no_glue, Width, Height)* 裁剪图片
crop_row_begin := 700
crop_row_end := 1060
gen_rectangle1 (ROI_Crop, crop_row_begin, 0, crop_row_end, Width)
reduce_domain (HeightImg_no_glue, ROI_Crop, HeightImg_no_glue)
reduce_domain (LumImage_no_glue, ROI_Crop, LumImage_no_glue)
reduce_domain (HeightImg_glue, ROI_Crop, HeightImg_glue)
reduce_domain (LumImage_glue, ROI_Crop, LumImage_glue)get_image_size (LumImage_no_glue, Width, Height)
dev_open_window (0, 0, Width/2,Height/2, 'black', WindowHandle)* 高度图像素间隔 单位um
step := 40

4.3 高度图预处理

高度图中干扰信息太多,比如底平面、高位杂质等,通过设定高度阈值,去除干扰的信息,聚焦胶水和模板位置的信息。

* 对高度图阈值分割
height_min := 3000  
height_max := 7500
threshold (HeightImg_no_glue, region, height_min, height_max)
reduce_domain (HeightImg_no_glue, region, HeightImg_no_glue)
threshold (HeightImg_glue, region, height_min, height_max)
reduce_domain (HeightImg_glue, region, HeightImg_glue)

预处理结果:
在这里插入图片描述
在这里插入图片描述

4.4 模板位置提取

在高度图中,尽心如下位置的提取:

* 分割模板区域
thr_min := 3500 
thr_max := 4500
gen_rectangle1 (ROI_1, 937, 118, 1060, 220) //选择这个两个孔的位置作为模板
reduce_domain (HeightImg_no_glue, ROI_1, HeightImg_no_glue_roi)
threshold (HeightImg_no_glue_roi, HeightImg_no_glue_roi_region, thr_min, thr_max)//缩小高度范围,聚焦模板平面
reduce_domain (HeightImg_no_glue, HeightImg_no_glue_roi_region, img_mod) //分割模板位置区域,注意是在高度图中分割,这样后面创建的模板3D图像的坐标系和原先的高度图是一样的

提取的模板如下:
在这里插入图片描述

4.5 高度图转点云图

要想进行点云匹配,必须首先将高度图转为点云图。halcon中没有该算子(可能没发现??),这里自己实现了一个算子height_to_3d_obj,可以将高度图转为halcon点云对象。
核心是构建X坐标图、Y坐标图和Z坐标图,然后调用halcon的xyz_to_object_model_3d算子,转为3D图。
三个图的宽高和原始的高度图一致:

  • X图:每个像素存储的是对应高度图相同行列像素的X世界坐标,使用间隔step(高度图像素间隔)构建。可能结果为[(第一行)0 40 80 120 …(第二行)…]
  • Y图:和X图类似,存储的是对应高度图相同行列像素的Y世界坐标,也使用step构建。可能的结果为[(第一行)0 0 0 … (第二行)40 40… ]
  • Z图:就是高度图。

最后需要使用reduce_domain算子只保留原高度图中分割的部分。
在这里插入图片描述

gen_image_const (ImageY, 'real', Width, Height)
gen_image_const (ImageZ, 'real', Width, Height)* 获取高度图中的region区域
get_domain (HeightImg, DomainH)* x图
tupleX :=[]
tuple_gen_sequence (0, (Width-1)*step, step, row_x) //一行
for Index := 0 to Height-1 by 1 //多行拼接成图像数据tupleX :=[tupleX,row_x]
endfor
get_domain(ImageX,domainX)
get_region_points(domainX,rows,cols)
set_grayval (ImageX, rows, cols, tupleX) //技巧,通过获取domain定义域,直接将序列赋值为像素
* 整体赋值完毕后再抠出region
reduce_domain (ImageX, DomainH, ImageX)* y图
tupleY :=[]
for Index := 0 to Height-1 by 1tuple_gen_const (Width, Index*step, row_y)tupleY :=[tupleY, row_y]
endfor
set_grayval (ImageY, rows, cols, tupleY)
reduce_domain (ImageY, DomainH, ImageY)* z图 - 转为real格式的图,原高度图非real格式
get_region_points(DomainH,rows_Z,cols_Z)
get_grayval(HeightImg,rows_Z,cols_Z,tupleZ)
zv0 := tupleZ
set_grayval (ImageZ, rows_Z, cols_Z, zv0) //ImageZ在前面是real格式
reduce_domain (ImageZ, DomainH, ImageZ)xyz_to_object_model_3d (ImageX, ImageY, ImageZ, ObjectModel3D3)
return ()

最后显示三个高度图的点云图像:

*3D对象模型查看
height_to_3d_obj (HeightImg_no_glue, step, obj3D_hk_no_glue)
height_to_3d_obj (HeightImg_glue, step, obj3D_hk_glue)
height_to_3d_obj (img_mod, step, obj3D_mod)
visualize_object_model_3d (WindowHandle, obj3D_hk_no_glue, [], [], ['lut','color_attrib','disp_pose'], ['color1','coord_z','true'], [], [], [], PoseOut)
visualize_object_model_3d (WindowHandle, obj3D_hk_glue, [], [], ['lut','color_attrib','disp_pose'], ['color1','coord_z','true'], [], [], [], PoseOut)
visualize_object_model_3d (WindowHandle, obj3D_mod, [], [], ['lut','color_attrib','disp_pose'], ['color1','coord_z','true'], [], [], [], PoseOut)

无胶水:
在这里插入图片描述
胶水:
在这里插入图片描述
模板:
在这里插入图片描述

4.6 点云匹配

先上代码:

* 点云匹配校准
create_surface_model (obj3D_mod, 0.03, [], [], SurfaceModel)//创建surface模型,因为上面的模型非点云型,需进行采样
MinScore := 0.1
* find返回的Pose指的是模型到目标的位姿变换关系,可以用rigid_trans_object_model_3d将模板转换到目标附近靠模
find_surface_model (SurfaceModel, obj3D_hk_glue, 0.03, 0.1, MinScore, 'true', ['num_matches', 'use_3d_edges'], [1, 'false'], Pose_glue, Score, SurfaceMatchingResult)
get_surface_matching_result (SurfaceMatchingResult, 'sampled_scene', [], SampledScene)
get_surface_matching_result (SurfaceMatchingResult, 'key_points', [], KeyPoints)* 胶路点云对齐到模型,注意rigid_trans_object_model_3d算子是将模型转变到目标场景中
* pose_invert (Pose_glue, Pose_glue_Invert)
rigid_trans_object_model_3d (obj3D_hk_no_glue, Pose_glue, obj3D_hk_no_glue_t)
visualize_object_model_3d (WindowHandle, [obj3D_hk_glue,obj3D_modTrans,obj3D_hk_no_glue_t], [], [], \['color_' + [0, 1, 2],'point_size_' + [0, 1, 2],'disp_pose'], ['red', 'blue', 'yellow', 1.0, 3.0, 5.0,'true'], [], [], [], PoseOut)
  • 首先create_surface_model 进行采样,作为基准;
  • find_surface_model 进行点云匹配,返回的Pose是模型到目标的位姿变换关系,这里的参数不再详细解释,需自己实验调节;
  • rigid_trans_object_model_3d 靠模,这里是将模型(无胶水点云)转变到目标场景中(胶水点云),用这个算子就可以进行点云对齐,为后面的高度图差分做准备。

在这里插入图片描述
其中红色的带胶的,黄色是无胶水,蓝色是无胶水的模板。

4.7 点云转高度图

现在需要将靠模后的无胶水点云转为高度图,这里又是自己封装的算子:
在这里插入图片描述

*3D对象中的xyz点云,转为z向高度图
get_object_model_3d_params (object_3d, 'point_coord_x', point_x_no_glue_t)
get_object_model_3d_params (object_3d, 'point_coord_y', point_y_no_glue_t)
get_object_model_3d_params (object_3d, 'point_coord_z', point_z_no_glue_t)
cols := int(point_x_no_glue_t/step) //在高度图中的行列坐标,cols[index]和rows[index]是一对。 
rows := int(point_y_no_glue_t/step) 
* 高度图赋值
for Index := 0 to |cols|-1 by 1* 注意其中可能有负数!下面将负数都转移到0,0* 可能有越界的点,都转移到0if (cols[Index] < 0 or cols[Index]>=Width)cols[Index] :=0rows[Index] :=0point_z_no_glue_t[Index] :=0endifif (rows[Index] < 0 or rows[Index]>=Height)cols[Index] :=0rows[Index] :=0point_z_no_glue_t[Index] :=0endif
endfor
gen_image_const (Height_img, img_type, Width, Height)
set_grayval (Height_img, rows, cols, point_z_no_glue_t) //将对应行列的,设置为对应的z值,比较绕这里。
return ()

实际代码:

* x y z的实际坐标是变了,所以深度图需要由这三个实际坐标来重新构建
obj3D_to_height (Height_img_no_glue_t, obj3D_hk_no_glue_t, step, Width, Height, ImgType)

带胶水的高度图:
在这里插入图片描述

转换之后的高度图(无胶水):
在这里插入图片描述
转换之前的高度图(无胶水):
在这里插入图片描述

4.8 差分

* 差分
sub_image (HeightImg_glue, Height_img_no_glue_t, ImageSub, 1, 0)
threshold (ImageSub, Image_Glue, 80, 1000)

背景为带胶水的亮度图,红色的为差分出的胶路Region:
在这里插入图片描述

5. 胶路分析

略。

相关文章:

Halcon 3D应用 - 胶路提取

1. 需求 本文基于某手环&#xff08;拆机打磨处理&#xff09;做的验证性工作&#xff0c;为了项目保密性&#xff0c;只截取部分数据进行测试。 这里使用的是海康3D线激光轮廓相机直线电机的方式进行的高度数据采集&#xff0c;我们拿到的是高度图亮度图数据。 提取手环上的胶…...

【Redis】Redis线程模型

目录 1. Redis 是单线程的&#xff0c;还是多线程的&#xff1f;2. Redis单线程模式是怎么样的&#xff1f;Redis 单线程模式的优势Redis 单线程的局限性Redis 单线程的优化策略 3. Redis采用单线程为什么还这么快4. Redis 6.0 之前为什么使用单线程&#xff1f;5. Redis 6.0 之…...

Electron构建桌面应用程序,服务于项目的自主学习记录(持续更新...

无所畏惧地面对未知&#xff0c;并将其视为成长的机会 大纲官网快速入门1.安装node.js -- 这里推荐用nvm管理2.脚手架创建3.electron 包安装到应用的开发依赖4.创建主进程(main.js)并启动项目1.创建页面2.配置main.js3.启动项目 -- 效果 进阶 -- 基于项目场景功能使用场景一&am…...

linux Load Average 计算

在内核代码 kernel/sched/loadavg.c 中有一个公式: a1 a0 * e a * (1 - e) 此算法是指数加权移动平均法&#xff08;Exponential Weighted Moving Average&#xff0c;EMWA&#xff09;&#xff0c;是一种特殊的加权移动平均法&#xff0c;它考虑当前和历史的所有数据&#…...

pandas常用数据格式IO性能对比

前言 本文对pandas支持的一些数据格式进行IO&#xff08;读写&#xff09;的性能测试&#xff0c;大数据时代以数据为基础&#xff0c;经常会遇到操作大量数据的情景&#xff0c;数据的IO性能尤为重要&#xff0c;本文对常见的数据格式csv、feather、hdf5、jay、parquet、pick…...

【D3.js in Action 3 精译_031】3.5.2 DIY实战:在 Observable 平台实现带数据标签的 D3 条形图并改造单元测试模块

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第一部分 D3.js 基础知识 第一章 D3.js 简介&#xff08;已完结&#xff09; 1.1 何为 D3.js&#xff1f;1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践&#xff08;上&#xff09;1.3 数据可…...

华为OD机试真题-字符串分割

题目描述&#xff1a; 给定非空字符串s&#xff0c;将该字符串分割成一些子串&#xff0c;使每个子串的ASCII码值的和均为水仙花数。 1、若分割不成功&#xff0c;则返回0。 2、若分割成功且分割结果不唯一&#xff0c;则返回-1。 3、若分割成功且分割结果唯一&#xff0c;则返…...

编程技巧:提高代码健壮性与可维护性的关键方法(以 Shell 为例)

在脚本编写和自动化工作中,良好的编程技巧对于确保代码的健壮性和可维护性至关重要。以下是一些关键的编程技巧,包括模块化设计、单元测试、版本控制、处理边界条件、错误处理、中间值保存和创建 Flag。本文将通过 Shell 脚本示例来阐述这些技巧的应用。 1. 模块化设计 **定…...

【无标题】ReadableStream is not defined

升级 node 版本到 18 及以上即可解决...

【JVM】高级篇

1 GraalVM 1.1 什么是GraalVM GraalVM是Oracle官方推出的一款高性能JDK&#xff0c;使用它享受比OpenJDK或者OracleJDK更好的性能。 GraalVM的官方网址&#xff1a;https://www.graalvm.org/ 官方标语&#xff1a;Build faster, smaller, leaner applications。 更低的CPU…...

nacos1.4源码-服务发现、心跳机制

nacos的服务发现主要采用服务端主动推送客户端定时拉取&#xff1b;心跳机制通过每5s向服务端发送心跳任务来保活&#xff0c;当超过15s服务端未接收到心跳任务时&#xff0c;将该实例设置为非健康状态&#xff1b;当超过30s时&#xff0c;删除该实例。 1.服务发现 nacos主要采…...

C++ 2D平台游戏开发案例

关于2D平台游戏的C开发案例&#xff0c;包括游戏设计、实现细节、图形渲染和音效处理等内容。虽然无法一次性提供3000字&#xff0c;但我会尽量详细描述各个部分&#xff0c;并确保有足够的深度和广度。 2D平台游戏开发案例 一、游戏设计 游戏概述 游戏名称&#xff1a;“冒险…...

【Webpack--019】TreeShaking

&#x1f913;&#x1f60d;Sam9029的CSDN博客主页:Sam9029的博客_CSDN博客-前端领域博主 &#x1f431;‍&#x1f409;若此文你认为写的不错&#xff0c;不要吝啬你的赞扬&#xff0c;求收藏&#xff0c;求评论&#xff0c;求一个大大的赞&#xff01;&#x1f44d;* &#x…...

Docker基本操作命令

Docker 是一个开源的应用容器引擎&#xff0c;允许开发者打包应用以及其依赖包到一个可移植的容器中&#xff0c;然后发布到任何流行的 Linux 机器上&#xff0c;也可以实现虚拟化。容器是完全使用沙箱机制&#xff0c;相互之间不会有任何接口。主要功能是为开发者提供一个简单…...

开源计算器应用的全面测试计划:确保功能性和可靠性

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

uni.requestPayment 支付成功之后会走 wx.onAppRoute

uni.requestPayment 是用于发起微信支付的统一接口&#xff0c;而 wx.onAppRoute 是用于监听小程序的路由变化。当 uni.requestPayment 支付成功后&#xff0c;如果发生了页面跳转或者其他路由变化&#xff0c;wx.onAppRoute 会被触发。这个行为是正常的&#xff0c;因为支付成…...

统⼀服务入口 - Gateway

网关介绍 问题 在 spring cloud 体系中我们通过 Eureka,Nacos 解决了服务注册,服务发现的问题,使⽤Spring Cloud LoadBalance解决了负载均衡的问题,使⽤ OpenFeign 解决了远程调⽤的问题. 但是当前所有微服务的接⼝都是直接对外暴露的,可以直接通过外部访问.为了保证对外服务的…...

QGraphicsWidget Class

Header:#include < QGraphicsWidget > qmake:QT += widgets Since:Qt 4.4 Inherits:QGraphicsObject and QGraphicsLayoutItem Inherited By:QGraphicsProxyWidget This class was introduced in Qt 4.4. Public Types enum anonymous {Type }Properties autoFi…...

探讨最好用的AI工具:从日常到创新的应用

文章目录 引言常用AI工具1. 语音助手2. 图像识别软件3. 机器翻译工具4. 智能客服系统 创新AI应用1. 自动驾驶汽车2. 虚拟试衣间3. 医疗影像分析4. 个性化推荐系统 个人体验分享1. 通义灵码2. 文心一言3. 智能写作助手4. 智能家居设备5. DALLE6. Whisper7. Codex8. Gym9. ChatGP…...

Python系统教程005(字符串的格式化输出)

知识回顾 1、默认情况下&#xff0c;input函数接收的数据是字符串类型。 2、字符串类型的关键词是str。 3、\n和\t都是转义字符&#xff0c;\n用来换行&#xff0c;\t用来留出一段固定长度的空白。 4、type函数能够用来查看变量的数据类型 5、数据类型的转换&#xff0c;举…...

六款电脑远程控制软件分享,2024最热门软件合集,总有一款适合你!速来看!

想要随时随地控制自己的电脑&#xff1f; 无论你是办公需求&#xff0c;还是要远程协助他人&#xff0c;一款好用的远程控制软件绝对少不了。 2024年最热门的六款远程控制软件已经为你准备好&#xff0c;总有一款适合你&#xff0c;赶快往下看吧&#xff01; 1. 安企神系统—…...

优质微信群不再难寻!掌握这些技巧就够了!

在当今信息爆炸的时代&#xff0c;微信群已成为人们交流思想、分享知识、建立人脉的重要平台。无论是专业领域的深入探讨&#xff0c;还是兴趣爱好的自由交流&#xff0c;微信群都能为你提供一个即时互动的虚拟空间。然而&#xff0c;面对海量的微信群信息&#xff0c;如何高效…...

python - mysql操作

Python MySQL 操作 1. 背景介绍 常见的Mysql驱动介绍&#xff1a; MySQL-python&#xff1a;也就是MySQLdb。是对C语言操作MySQL数据库的一个简单封装。遵循了Python DB API v2。但是只支持Python2&#xff0c;目前还不支持Python3。mysqlclient&#xff1a;是MySQL-python的…...

基于Springboot+Vue的服装生产管理信息系统设计与实现(含源码数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 在这个…...

75.【C语言】文件操作(2)

承接74.【C语言】文件操作(1)文章 目录 5.详细阐释文件的打开和关闭 1.流 2.标准流 3.文件指针 FILE 两层含义 附:FILE的头文件 4.操作文件的步骤 1.fopen函数 ​编辑 简写的全称查询 输入&输出的含义 2.fclose函数 3.代码示例 补充:绝对路径和相对路径 注意…...

Redis 使用记录

封装调用redis类 import redis from conf.config import RedisConfigclass RedisConfig:redis_json config_data[redis_config]redis_pwd env.get(project_name).get(pwd)host redis_json.get("host")dialog_states_db redis_json.get("dialog_states_db&q…...

IDEA实用小技巧

1. IDEA代码提示忽略大小写 打开设置&#xff0c;点击Editor–>General–>Code Completion &#xff0c;然后将右侧的Match Case前面的选框去掉勾选。 2. 快速查找接口RestfulToolkitX插件 该插件可以快速查找接口&#xff08;快捷键为CTRL\&#xff09; 还会在侧边栏…...

PEI转染试剂对血清的敏感性研究

在细胞生物学和基因工程领域&#xff0c;聚乙烯亚胺&#xff08;PEI&#xff09;作为一种常用的转染试剂&#xff0c;广泛应用于基因的递送。然而&#xff0c;PEI转染试剂对血清的敏感性一直是研究的热点问题。转染过程中&#xff0c;血清作为培养基的成分之一&#xff0c;可能…...

手机怎样改网络ip地址?内容详尽实用

随着网络技术的发展&#xff0c;更改手机IP地址已成为一种常见需求。本文将详细介绍如何在不同网络环境下更改手机IP地址&#xff0c;包括移动网络和WiFi网络&#xff0c;以及同时适用于两种网络的方法&#xff0c;内容详尽实用&#xff0c;干货满满。 一、适用于移动网络&…...

使用Pybind11,Python调用C++动态库

最近学习了一下pybind11&#xff0c;使用python来调用C动态库的模式&#xff0c;在某些场景下有用&#xff0c;这里做一个记录。 环境准备 安装python&#xff0c;我这里安装的是3.12版本 下载Pybind11库&#xff0c;这是一个仅包含头文件的轻量级库&#xff0c;使用起来非常…...