数学建模算法与应用 第7章 数理统计与方法
目录
7.1 参数估计与假设检验
Matlab代码示例:均值的假设检验
7.2 Bootstrap方法
Matlab代码示例:Bootstrap估计均值的置信区间
7.3 方差分析
Matlab代码示例:单因素方差分析
7.4 回归分析
Matlab代码示例:线性回归
7.5 基于灰色理论和Bootstrap理论的大规模定制质量控制方法研究
习题 7
总结
数理统计是通过数据来推断不确定性的科学工具,在数据分析和科学实验中起着至关重要的作用。统计方法可以帮助我们从样本中推断总体的特性,验证假设并分析变量之间的关系。本章将介绍数理统计中的基本概念,包括参数估计、假设检验、方差分析和回归分析等方法,以及它们在Matlab中的实现。
7.1 参数估计与假设检验
参数估计是通过样本数据对总体的参数进行推断的过程,通常包括点估计和区间估计。假设检验则用于验证样本数据是否支持某个假设。
-
点估计:通过样本直接给出总体参数的估计值。例如,样本均值作为总体均值的点估计。
-
区间估计:通过样本数据给出总体参数的一个可能范围,以一定的置信水平表示不确定性。
假设检验主要包括以下步骤:
-
提出原假设与备择假设。
-
选择检验统计量,并计算其值。
-
确定显著性水平,并判断是否拒绝原假设。
Matlab代码示例:均值的假设检验
% 生成数据
sample_data = [12.5, 13.1, 12.8, 13.5, 12.9, 13.3];% 设定总体均值的原假设为mu0 = 13
mu0 = 13;% 使用ttest函数进行单样本t检验
[h, p] = ttest(sample_data, mu0);% 输出结果
if h == 0fprintf('无法拒绝原假设,p值为:%.3f\n', p);
elsefprintf('拒绝原假设,p值为:%.3f\n', p);
end
在上述代码中,使用ttest函数对样本数据进行单样本t检验,以判断是否可以拒绝原假设。
7.2 Bootstrap方法
Bootstrap是一种基于重抽样的非参数统计方法,适用于无法通过传统方法获得精确分布的情况下。它通过对样本进行多次重抽样,估计总体参数的分布,从而可以得到参数的置信区间。
Matlab代码示例:Bootstrap估计均值的置信区间
% 生成样本数据
sample_data = [12.5, 13.1, 12.8, 13.5, 12.9, 13.3];% 设定Bootstrap参数
num_bootstrap = 1000;
bootstrap_means = zeros(num_bootstrap, 1);% 进行重抽样
n = length(sample_data);
for i = 1:num_bootstrapresample = datasample(sample_data, n);bootstrap_means(i) = mean(resample);
end% 计算95%置信区间
ci = prctile(bootstrap_means, [2.5 97.5]);% 输出结果
fprintf('均值的95%%置信区间为:[%.2f, %.2f]\n', ci(1), ci(2));
该代码使用Bootstrap方法对样本均值进行了重抽样估计,并计算了95%的置信区间。
7.3 方差分析
方差分析(ANOVA)是一种用于比较多个样本均值是否存在显著差异的统计方法,常用于实验设计中,以确定不同因素对结果的影响是否显著。
-
单因素方差分析:用于比较多个组的均值是否相等。
-
双因素方差分析:用于研究两个因素对实验结果的影响。
Matlab代码示例:单因素方差分析
% 生成数据
group1 = [10.1, 9.8, 10.5, 10.0, 9.9];
group2 = [12.2, 11.8, 12.5, 11.9, 12.0];
group3 = [14.3, 14.1, 13.9, 14.2, 14.0];% 将数据组织为表格
data = [group1, group2, group3];
group = [ones(1, length(group1)), 2*ones(1, length(group2)), 3*ones(1, length(group3))];% 使用anova1函数进行单因素方差分析
[p, tbl, stats] = anova1(data, group);% 输出结果
fprintf('单因素方差分析的p值为:%.3f\n', p);
上述代码使用anova1函数对三个组的数据进行单因素方差分析,以判断不同组的均值是否存在显著差异。
7.4 回归分析
回归分析用于研究因变量与自变量之间的关系,通过建立数学模型来描述这种关系。最常用的是线性回归,它假设因变量与自变量之间存在线性关系。
Matlab代码示例:线性回归
% 生成数据
x = [1, 2, 3, 4, 5];
y = [1.1, 2.0, 2.9, 4.2, 5.1];% 使用fitlm函数进行线性回归
model = fitlm(x, y);% 输出回归系数和R方值
disp(model);% 绘制回归拟合图
figure;
plot(model);
xlabel('自变量 x');
ylabel('因变量 y');
title('线性回归分析');
该代码使用fitlm函数对数据进行线性回归,并绘制了回归拟合图。通过线性回归分析,可以找到数据之间的线性关系,并评估模型的拟合效果。
7.5 基于灰色理论和Bootstrap理论的大规模定制质量控制方法研究
在大规模定制生产中,质量控制尤为重要。灰色理论结合Bootstrap方法可以用于对生产过程中的数据进行建模和分析,以提高质量控制的准确性。灰色理论可以处理小样本、不确定性强的数据,而Bootstrap可以通过重抽样提供稳健的参数估计。
习题 7
在第七章结束后,提供了一些相关的习题,帮助读者深入理解数理统计方法。习题7包括:
-
假设检验:对某产品的平均重量进行假设检验,判断其是否符合标准。
-
Bootstrap方法:使用Bootstrap方法对样本的中位数进行置信区间估计,并在Matlab中实现。
-
方差分析与回归:进行一次实验设计,收集数据后使用单因素方差分析和线性回归分析进行结果评估。
通过这些习题,读者可以进一步掌握如何利用数理统计方法进行数据分析,以及如何利用Matlab工具实现这些方法。
总结
第七章介绍了数理统计的基本概念及其常用方法,包括参数估计、假设检验、方差分析和回归分析等。数理统计方法在科学研究和工程应用中扮演着重要角色,帮助我们对数据进行有效分析和推断。通过本章的学习,读者可以掌握常见统计方法的原理和应用,并能够利用Matlab工具进行统计分析。接下来的章节将进一步探索多目标优化等高级优化技术,帮助读者更全面地理解优化理论和实践。

相关文章:
数学建模算法与应用 第7章 数理统计与方法
目录 7.1 参数估计与假设检验 Matlab代码示例:均值的假设检验 7.2 Bootstrap方法 Matlab代码示例:Bootstrap估计均值的置信区间 7.3 方差分析 Matlab代码示例:单因素方差分析 7.4 回归分析 Matlab代码示例:线性回归 7.5 基…...
【网络】洪水攻击防御指南
洪水攻击防御指南 摘要: 本文深入探讨了洪水攻击的概念、危害以及防御策略。通过Java技术实现,我们将学习如何通过编程手段来增强服务器的安全性。文章不仅提供了详细的技术解读,还包含了实用的代码示例和流程图,帮助读者构建一个…...
应对Redis大Key挑战:从原理到实现
在使用Redis作为缓存或数据存储时,开发者可能会遇到大Key(Big Key)问题。大Key是指在Redis中存储的单个键值对,其值的大小非常大,可能包含大量数据或占用大量内存。大Key问题会导致性能下降、内存消耗过多以及其他潜在…...
网络安全的全面指南
目录 网络安全的全面指南1. 引言2. 网络安全的基本概念3. 网络安全框架4. 常见网络安全攻击及案例4.1 病毒与恶意软件攻击案例4.2 钓鱼攻击案例4.3 DDoS 攻击案例 5. 网络安全最佳实践5.1 强密码策略5.2 定期更新和补丁管理5.3 数据备份与恢复策略 6. 企业网络安全策略6.1 安全…...
前端性能优化全面指南
前端性能优化是提升用户体验的关键,页面加载速度、响应时间和交互流畅度直接影响用户的留存率和满意度。以下是常用的前端性能优化方法,从网络层、资源加载、JavaScript 执行、渲染性能等方面进行全方位优化。 减少 HTTP 请求 合并文件:将多…...
JavaScript-API(倒计时的实现)
基础知识 1.时间对象的使用 1.1 实例化 要获取一个时间首先需要一个关键词new了实例化 const time new Date() 如果是获取具体的具体的时间 const time new Date(2024-6-1 16:06:44) 1.2 日期对象方法 方法作用说明getFullYear()获得年份获得4…...
【C++】——继承【上】
P. S.:以下代码均在VS2019环境下测试,不代表所有编译器均可通过。 P. S.:测试代码均未展示头文件stdio.h的声明,使用时请自行添加。 博主主页:Yan. yan. …...
SpringBoot 整合 阿里云 OSS图片上传
一、OOS 简介 阿里云OSS(Object Storage Service)是一种基于云存储的产品,适用于存储和管理各种类型的文件,包括图片、视频、文档等。 阿里云OSS具有高可靠性、高可用性和低成本等优点,因此被广泛应用于各种场景&…...
内核编译 设备驱动 驱动程序
内核编译 一、内核编译的步骤 编译步骤: (linux 内核源码的顶层目录下操作 ) 1. 拷贝默认配置到 .config cp config_mini2440_td35 .config 2. make menuconfig 内核配置 make menuconfig 3. make uImage make u…...
自由学习记录
约束的泛型通配符? Java中的泛型 xiaomi和byd都继承了car,但是只是这两个类是car的子类而已,而arraylist<xiaomi> ,arraylist<byd> 两个没有半毛钱继承关系 所以传入的参数整体,是car的list变形,里面的确都能存car…...
在 C# 中使用 LINQ 查询文件列表并找出最大文件
文章目录 1. 环境准备2. 创建项目3. 引入命名空间4. 示例代码5. 运行代码6. 进阶:异常处理7. 总结 在现代 C# 开发中,LINQ (Language Integrated Query) 提供了一种强大而优雅的方式来处理集合数据。本文将详细介绍如何使用 LINQ 查询文件系统中的文件&a…...
数学建模算法与应用 第6章 微分方程建模及其求解方法
目录 6.1 微分方程建模概述 6.2 发射卫星与三阶火箭建模 Matlab代码示例:火箭发射模拟 6.3 微分方程数值解法 Matlab代码示例:欧拉法与龙格-库塔法 6.4 放射性废料的处理 Matlab代码示例:放射性衰变 6.5 初值问题的Matlab数值求解 习…...
数据库的相关知识
数据库的相关知识 1.数据库能够做什么? 存储大量数据,方便检索和访问保持数据信息的一致、完整共享和安全通过组合分析,产生新的有用信息 2.数据库作用? 存储数据、检索数据、生成新的数据 3.数据库要求? 统一、…...
Python cachetools常用缓存算法汇总
文章目录 cachetools介绍缓存操作设置数据生存时间(TTL)自定义缓存策略缓存装饰器缓存清理cachetools 超过缓存数量maxsize cachetools 使用示例 cachetools介绍 cachetools : 是一个Python第三方库,提供了多种缓存算法的实现。缓存是一种用于…...
java类和对象_成员变量方法修饰符局部变量this关键字-cnblog
java类和对象 成员变量 权限修饰符 变量类型 变量名; 成员变量可以是任意类型,整个类是成员变量的作用范围 成员变量 成员方法 权限修饰符 返回值类型 方法名() 成员方法可以有参数,也可以有返回值,用return声明 权限修饰符 private 只能在本类…...
海信和TCL雷鸟及各大品牌智能电视测评
买了型号为32E2F(9008)的海信智能的电视有一段时间了,要使用这个智能电视还真能考验你的智商。海信电视有很多优点,它的屏幕比较靓丽,色彩好看,遥控器不用对着屏幕就能操作。但也有不少缺点。 1. 海信智能电视会强迫自动更新操作…...
Linux 基本系统命令及其使用详解手册(六)
指令:mesg 使用权限:所有使用者 使用方式:mesg [y|n] 说明 : 决定是否允许其他人传讯息到自己的终端机介面 把计 : y:允许讯息传到终端机介面上。 n:不允许讯息传到终端机介面上 。 如果没有设定,则讯息传递与否则由终端机界…...
Oracle架构之段管理和区管理
文章目录 1 段1.1 简介1.1.1 定义1.1.2 分类 1.2 段空间的管理模式1.2.1 手工段空间管理(Manual Segment Space Management)1.2.2 自动段空间管理(Auto Segment Space Management) 1.3 段空间的手工管理(Manual Segmen…...
mybatis-plus转换数据库json类型数据为java对象
JacksonTypeHandler JacksonTypeHandler 可以实现把json字符串转换为java对象。同一类型的handler有: Fastjson2TypeHandlerFastjsonTypeHandlerGsonTypeHandlerJacksonTypeHandler 至于需要哪一个选一个用就好了 使用方式 在实体类中加入注解 TableName(value "table_…...
Java | Leetcode Java题解之第467题环绕字符串中唯一的子字符串
题目: 题解: class Solution {public int findSubstringInWraproundString(String p) {int[] dp new int[26];int k 0;for (int i 0; i < p.length(); i) {if (i > 0 && (p.charAt(i) - p.charAt(i - 1) 26) % 26 1) { // 字符之差为…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
ArcPy扩展模块的使用(3)
管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...
Qt的学习(二)
1. 创建Hello Word 两种方式,实现helloworld: 1.通过图形化的方式,在界面上创建出一个控件,显示helloworld 2.通过纯代码的方式,通过编写代码,在界面上创建控件, 显示hello world; …...
