当前位置: 首页 > news >正文

LLM4Rec最新工作: 字节发布用于序列推荐的分层大模型HLLM

前几个月 Meta HSTU 点燃各大厂商对 LLM4Rec 的热情,一时间,探索推荐领域的 Scaling Law、实现推荐的 ChatGPT 时刻、取代传统推荐模型等一系列话题让人兴奋,然而理想有多丰满,现实就有多骨感,尚未有业界公开真正复刻 HSTU 的辉煌。这里面有很多原因,可能是有太多坑要踩,也有可能是 Meta HSTU 的基线较弱,导致国内已经卷成麻花的推荐领域难以应用 HSTU 产生突破性效果。

在这里插入图片描述

然而做起来困难并不代表不去做,总要有真的勇士率先攻克难关迈出一步。字节前几天(2024.9.19 发布 arxiv)公开的工作 ⌜HLLM⌟(分层大语言模型)便是沿着这一方向的进一步探索,论文内也提及了 follow HSTU:

图片

图片

论文题目:

HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling

论文链接:

https://arxiv.org/abs/2409.12740

代码链接:

https://github.com/bytedance/HLLM

这里我针对全文进行一个详细解析,也会有一些疑问,欢迎评论区探讨以及点赞收藏。

1. 背景

传统推荐问题:推荐重要的是建模 user、item feature,主流方法是 ID-based,将 user、item 转为 ID 并创建对应的 embedding table,然而一般都是 embedding 参数很大而模型参数较小,这会导致以下问题:

  1. 严重依赖 ID feature 在冷启动时表现不好
  2. 模型较小难以建模复杂且多样的用户兴趣

过往 LLM 探索方向:大致分为三种:

  1. 利用 LLM 提供一些信息给推荐系统
  2. 将推荐系统转变为对话驱动的形式
  3. 修改 LLM 不再只是文本输入/输出,比如直接输入 ID feature 给 LLM

LLM4Rec 挑战:其中一个 issue 是在相同时间 span 情况下,相比 ID-based 方法 LLM 的输入更长,复杂度更高;另一个是相对于传统方法 LLM-based 方法提升并不显著。

三个关键问题:LLM 应用到推荐有三个问题需要评估:

  1. LLM 预训练权重的真正价值:模型权重蕴含着世界知识,但是如何激活这些知识,只能使用文本输入吗?这也为之后使用 feature 输入埋下伏笔;
  2. 对推荐任务进行微调是有有必要性?直接使用 pretrain 还是说要进一步微调?
  3. LLM 是否可以应用在推荐系统中并呈现 scaling law?

由此提出了 Hierarchical Large Language Mode****l(HLLM)架构,训练 Item LLM(用来提取 item feature)和 User LLM (item feature 作为输入,用于预测下一个 item),实验表明在公开数据集上显著超越 ID-based 方法,并呈现了 Scaling Law 特性。在抖音落地,A/B 实验显示在重要指标上增长 0.705%

2. 方法

2.1 HLLM

图片

分为 Item LLM 和 User LLM,两者参数并不共享,都是可训练的并通过 next item predict 来进行优化。

可以直接基于已经预训练好的(例如 llama、baichuan)来训练。

Item LLM 使用 item 的描述作为输入,包括 Title、Tag、Description,最后再加上一个特殊 token:[ITEM],特殊 token 对应输出的代表该 item 的 embedding;

User LLM 输入是用户历史交互序列,输入序列中每个 item 就来自于 Item LLM 的输出。由于输入并非文本 token,所以会去除预训练模型的 word embedding;

2.2 优化目标

推荐系统大致分为两类:生成式推****荐判别式推荐,而 HLLM 同时应用了这两种。

首先针对 Item LLM 的训练虽然论文没提及,但应该就是简单的 next token prediction 的训练,针对输入的每个位置预测下一个 token,损失为交叉熵损失。

其次针对 User LLM 的训练还能用 next token prediction 吗?当然不能!因为去除了 word embedding,词表都没了,还怎么预测 next token。那该怎么做呢?

生成式推荐:

实际会 User LLM 使用 InfoNCE 来作为生成损失,对于某个物品 模型输出的 是正样本,随机抽取的其他物品为负样本,不得不说将对比学习的 InfoNCE 作为预测 next token 的损失设计的很巧妙。

定义的生成式损失函数 如下所示:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这里,公式中的各个符号代表以下含义:

  • 是一个相似度函数,带有可学习参数;
  • 表示第 个用户的历史交互中由物品 LLM 生成的第 个物品嵌入;
  • 表示由用户 LLM 为第 个用户预测的第 个物品嵌入;
  • 是负采样的数量, 表示第 个负样本的嵌入;
  • 表示批次中的用户总数, 表示用户历史交互的长度;

判别式推荐:

业界主要还是应用判别式推荐模型,HLLM 同样也可。

首先给出问题定义,给定用户的行为序列 和一个目标 item ,模型要预测用户对该 item 感不感兴趣(例如点击、点赞、购买)等。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如上图所示,分为 Early Fusion 和 Late Fusion(实际论文指出真正上线使用的是 Late Fusion)

Early Fusion:将 item 输入给 Item LLM 后得到的 embedding 直接拼到序列后输入给 User LLM,将对应位置的输出做分类。效果好但效率低。

Late Fusion:类似于 Item LLM,使用 User LLM 提取得到用户的 embedding,即 [USER] 拼到序列后输入给 User LLM,将对应位置的输出与 拼到一起做分类。效果差些但效率高。

这两者有点类似单塔和双塔,一个是可以早期进行交叉充分学习但由于候选项过多效率低下,另一个是后期再交叉效率更高。实际在落地使用的是 Late Fusion。

预测是个二分类问题,训练损失函数如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

其中,y 表示训练样本的标签,x 表示预测的 logit。

经验上,next item prediction 也可以作为判别模型中的辅助损失,用于进一步提升性能。因此,最终的损失函数可以表示为:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

其中 用来控制辅助损失的权重。

3. 实验

3.1 公开数据集

数据集使用 PixelRec、Amazon Book,baseline 选用 SASRec 和 HSTU;

离线实验使用生成式推荐(为了与其他方法公平对比),在线 A/B 实验使用判别式推荐(为了与线上系统兼容);

自身模型设置 HLLM-1B、HLLM-7B 两种,HLLM-1B 采用 TinyLlama-1.1B,HLLM-7B 采用 Baichuan2-7B

HLLM 仅在 PixelRec,Book 训练 5 个 eopch,对比之下其他方法训练 50-200 epoch 不等,其他细节设置详见论文。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

简单来说 HLLM 效果比 SASRec 和 HSTU 都要好。

这里有个疑问,目前 HSTU 公开的代码和设置都是忽略了动作这一输入,如若这里实验仅使用 item 并不能真正体现 HSTU 的能力,标星的都是作者自己复现的。

在线 A/B 实验:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

【设置】采用 HLLM-1B,应用 判别式推荐 + Late Fusion,

【训练】采用三阶段方法训练:

阶段1:端到端训练 HLLM,包括 Item LLM 和 User LLM,用户行为长度截断为 150 来加速;

阶段2:使用阶段 1 训好的 Item LLM 所有的 item emb 存起来,然后继续只训练 User LLM,输入的 item emb 来自于库内。由于只训练 User LLM,用户行为扩大为 1000;

阶段3:经历前两个阶段大量数据训练后,HLLM 权重不再改变,提取 user feature 和 item feature 喂给线上模型训练。

【推理】在 Serving 阶段,如图所示,item emb 会在其创建时提取,user emb 会进行天级别更新仅仅当用户在前一天发生过交互。基于该方法,线上推理系统推理时间基本不发生变化。

最后做 A/B 实验,重要指标提升 0.705%

4. 问题

4.1 微调相比直接使用预训练对于推荐目标是否有收益?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

**结论1:**对于 Item LLM 和 User LLM,基于预训练微调更好;

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

**结论2:**预训练使用的 token 越多,效果越好;此外如果预训练后再进行 SFT(在对话场景下),效果会下降,原因可能是因为 SFT 仅仅训练 follow 指令的能力,而对推荐本身无益。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结论3:Item LLM 和 User LLM 都训练会更好。

4.2 HLLM 是否有 Scaling 特性?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

针对 Item 和 User LLM 都做了Scaling 实验:

**结论:**对于模型大小具有 scaling 特性;

(模型设置都不是一种结构,LLaMA变成了BERT,这也行?)

4.3 对比 SoTA 方法(HSTU)优势是什么?

论文主要先说了 HLLM 比 HSTU 在相同设置下效果更好,又强调了当增加负样本数量和 batchsize 时,基于 ID 的模型(HSTU)提升相对有限,HSTU-Large R@200 指标 +0.76,而相同设置的 HLLM-1B +2.44。

4.4 训练和 Serving 效率如何?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结论1:相对于 HSTU,HLLM 达到相同性能只需 1/6 至 1/4 的数据,需求更少。其次在实际推理时可以先 cache 所有 item emb;所以 HLLM 可以先训练 item LLM,然后cache item emb,然后再训练 User LLM,上图便展示了在 Pixel8M 的效果。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结论2:itemcache 比原来的性能略微降低,但仍然比 HSTU 好。

值得注意的是,实验所用预训练数据量不到 Pixel8M 的一半,且部分物品未出现在预训练数据中,仍然取得了不错的性能。在工业场景下,用户行为的数据量远大于 item 数量,因此相比 ID-based 模型 cost 一致。工业上实验同时表明,随着预训练数据量的增加,item cache 与 全量微调 之间的 gap 大大缩小。

5. 消融

5.1 Item LLM

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结论:Item LLM 采用 Tag + Title + Description + length=256 效果最好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结论:采用 [ITEM] token 提取 emb 比 mean pooling 方法好。

5.2 UserLLM

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结论:输入用户序列长度采用 length=50 相比其他短的会更好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结论:UserLLM 生成的 LLM emb 比 Item ID emb 更好,LLM emb 加上 ID emb 效果变差,加上 Timestamp emb 效果最好。

5.3 工业场景

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结论:工业场景下 Item LLM 和 User LLM 采用 7B 更好,User LLM 输入长度采用 1k 最好。

6. 小结

字节推出的 HLLM 利用大语言模型提取物品特征并建模用户兴趣,有效地将预训练知识集成到推荐系统中,并证明了基于推荐目标的微调至关重要。HLLM 在更大的模型参数下展现了出色的可扩展性。实验表明,HLLM 优于传统的基于 ID 的模型,在学术数据集上取得了很好的结果。在线 A/B 测试进一步验证了 HLLM 的实际效率和适用性,标志着 LLM4Rec 的重大进展。

最后如果您也对AI大模型感兴趣想学习却苦于没有方向👀
小编给自己收藏整理好的学习资料分享出来给大家💖
👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码关注免费领取【保证100%免费】🆓

在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉如何学习AI大模型?👈

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
在这里插入图片描述

四、AI大模型商业化落地方案

在这里插入图片描述

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

相关文章:

LLM4Rec最新工作: 字节发布用于序列推荐的分层大模型HLLM

前几个月 Meta HSTU 点燃各大厂商对 LLM4Rec 的热情,一时间,探索推荐领域的 Scaling Law、实现推荐的 ChatGPT 时刻、取代传统推荐模型等一系列话题让人兴奋,然而理想有多丰满,现实就有多骨感,尚未有业界公开真正复刻 …...

怎么高效对接SaaS平台数据?

SaaS平台数据对接是指将一个或多个SaaS平台中的数据集成到其他应用或平台中的过程。在当前的数字化时代,企业越来越倾向于使用SaaS平台来管理他们的业务和数据。然而,这些数据通常散布在不同的SaaS平台中,这对于企业数据的整合和分析来说可能…...

Spark算子使用-Map,FlatMap,Filter,diatinct,groupBy,sortBy

目录 Map算子使用 FlatMap算子使用 Filter算子使用-数据过滤 Distinct算子使用-数据去重 groupBy算子使用-数据分组 sortBy算子使用-数据排序 Map算子使用 # map算子主要使用长场景,一个转化rdd中每个元素的数据类型,拼接rdd中的元素数据&#xf…...

CSS响应式布局

CSS 响应式布局也称自适应布局,是 Ethan Marcotte 在 2010 年 5 月份提出的一个概念,简单来讲就是一个网站能够兼容多个不同的终端(设备),而不是为每个终端做一个特定的版本。这个概念是为解决移动端浏览网页而诞生的。…...

AI大模型书籍丨掌握 LLM 和 RAG 技术,这本大模型小鸟书值得一看!

本指南旨在帮助数据科学家、机器学习工程师和机器学习/AI 架构师探索信息检索与 LLMs 的集成及其相互增强。特别聚焦于 LLM 和检索增强生成(RAG)技术在信息检索中的应用,通过引入外部数据库与 LLMs 的结合,提高检索系统的性能。 …...

Mysql和Oracle使用差异和主观感受

这两种常用的关系型数据库有何差异? 支持和社区 MySQL:有一个活跃的开源社区,用户可以获取大量的文档和支持。 Oracle:提供了专业的技术支持,但通常需要额外的费用。 易用性 MySQL:通常被认为是更易于学…...

【Java】—— File类与IO流:File类的实例化与常用方法

目录 1. java.io.File类的使用 1.1 概述 1.2 构造器 1.3 常用方法 1、获取文件和目录基本信息 2、列出目录的下一级 3、File类的重命名功能 4、判断功能的方法 5、创建、删除功能 1.4 练习 练习1: 练习2: 练习3: 1. java.io.Fil…...

C++设计模式——装饰器模式

欢迎来到 破晓的历程的 博客 ⛺️不负时光,不负己✈️ 什么是装饰器模式? 装饰器模式(Decorator Pattern)是一种结构型设计模式,允许你向一个现有的对象添加新的功能,同时又不改变其结构。这种模式通过创…...

C#使用ITextSharp生成PDF文件实例详解

许多项目开发中需要生成PDF, 常规办法使用官方提供的Microsoft.Office.Interop.Worddll插件,但是这种方法需要完全安装OFFICE,另外版本不一致还会出现很多错误。一般不推荐使用。 下面介绍这种巧妙的用法,定能事半功倍。 本文使用ITextSharp完成功能。 首先,通过NuGet…...

10.9QT对话框以及QT的事件机制处理

MouseMoveEvent(鼠标移动事件) widget.cpp #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);// 设置窗口为无边框,去掉标题栏等装饰this->setWi…...

SiLM266x系列SiLM2661高压电池组前端充/放电高边NFET驱动器 为电池系统保护提供可靠性和设计灵活性

SiLM2661产品概述: SiLM2661能够灵活的应对不同应用场景对锂电池进行监控和保护的需求,为电池系统保护提供可靠性和设计灵活性。是用于电池充电/放电系统控制的低功耗、高边 N 沟道 FET 驱动器,高边保护功能可避免系统的接地引脚断开连接&am…...

linux中sed命令详解

sed 是 Linux 中的一个流编辑器(stream editor),主要用于处理文本的编辑和转换。它可以从文件或标准输入读取内容,然后根据指定的模式和指令对数据进行处理,最后输出修改后的结果。它的强大之处在于可以通过脚本或命令…...

vue 模板语法

Vue 使用一种基于 HTML 的模板语法,使我们能够声明式地将其组件实例的数据绑定到呈现的 DOM 上。所有的 Vue 模板都是语法层面合法的 HTML,可以被符合规范的浏览器和 HTML解析器解析。 文本插值 最基本的数据绑定形式是文本插值,它使用的是…...

bladex漏洞思路总结

Springblade框架介绍: SpringBlade是一个基于Spring Boot和Spring Cloud的微服务架构框架,它是由商业级项目升级优化而来的综合型项目。 0x1 前言 最近跟一些大佬学习了blade的漏洞,所以自己总结了一下,在渗透测试过程中&#x…...

解决SqlServer自增主键使用MybatisPlus批量插入报错问题

报错 SqlServer 表中主键设置为自增,会报以下错误。 org.springframework.jdbc.UncategorizedSQLException: Error getting generated key or setting result to parameter object. Cause: com.microsoft.sqlserver.jdbc.SQLServerException: 必须执行该语句才能获…...

leetcode:反转字符串中的单词III

题目链接 string reverse(string s1) {string s2;string::reverse_iterator rit s1.rbegin();while (rit ! s1.rend()){s2 *rit;rit;}return s2; } class Solution { public:string reverseWords(string s) {string s1; int i 0; int j 0; int length s.length(); for (i …...

深度学习常见问题

1.YOLOV5和YOLOV8的区别 YOLOv5 和 YOLOv8 是两个版本的 YOLO(You Only Look Once)目标检测算法,它们在网络架构、性能优化、功能扩展等方面有显著的区别。YOLOv5 是 YOLO 系列的重要改进版本,而 YOLOv8 是最新的一次重大升级&am…...

神经网络的一些benchmark示例

1.MLPerf https://github.com/mlcommons/inference?tabreadme-ov-file https://docs.mlcommons.org/inference/benchmarks/text_to_image/sdxl/ MLPerf 是一个业界标准的机器学习基准测试套件,旨在评估各种硬件、框架和模型的性能。它包含训练和推理两个部分&…...

如何进行统级架构设计

统级架构设计是一个复杂的过程,需要综合考虑业务需求、技术选型、系统可扩展性、可维护性等多个方面。以下是一份系统级架构设计的方法论,包括以下几个步骤: 需求分析: 与业务相关人员进行深入沟通,了解业务需求、业…...

鼓组编写:SsdSample鼓映射 GM Map 自动保存 互换midi位置 风格模板 逻辑编辑器

SsdSample音源的键位映射 方便编写鼓的技巧 可以这样去设置键位关系的面板和钢琴卷帘窗的面板,方便去写鼓。 可以先按GM的midi标准去写鼓,然后比对下鼓的键位映射的关系,去调整鼓。 可以边看自己发b站等处的图文笔记,然后边用电…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

大数据驱动企业决策智能化的路径与实践

&#x1f4dd;个人主页&#x1f339;&#xff1a;慌ZHANG-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、引言&#xff1a;数据驱动的企业竞争力重构 在这个瞬息万变的商业时代&#xff0c;“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...