当前位置: 首页 > news >正文

机器学习中的熵(Entropy)是什么?

在机器学习和信息理论中,熵(Entropy)是衡量不确定性和信息量的一个重要概念。熵最初由信息论的奠基人克劳德·香农(Claude Shannon)在1948年提出,用来衡量信息源的信息不确定性。在机器学习中,熵被用于许多场景,例如分类任务中的决策树构建,用来衡量一个属性对分类的贡献。下面详细介绍熵的定义和推导过程。

1. 熵的定义

熵衡量的是一个随机变量的不确定性。对于一个离散的概率分布 ( P ) ,其熵(Entropy)定义为:

H ( X ) = − ∑ i = 1 n P ( x i ) log ⁡ P ( x i ) H(X) = - \sum_{i=1}^{n} P(x_i) \log P(x_i) H(X)=i=1nP(xi)logP(xi)
其中:

  • ( H(X) ) 表示随机变量 ( X ) 的熵;
  • ( x_i ) 表示随机变量 ( X ) 可能取的第 ( i ) 个值;
  • ( P(x_i) ) 是 ( X ) 取值 ( x_i ) 的概率;
  • 对数 ( \log ) 通常以 2 为底(对应单位为“比特”),但也可以使用自然对数(对应单位为“纳特”)。

熵反映的是从信息源中获得的信息的平均量。假如某个事件的概率越低(即它越不确定),一旦发生,就提供了更多的信息,因此熵越大。

2. 熵的推导

熵的推导可以从几个基本信息论概念入手:

a. 自信息量(Self-Information)

自信息量是衡量某个特定事件发生时,它为我们带来的信息量。对于某个事件 ( x_i ) 发生,它的自信息量定义为:

I ( x i ) = − log ⁡ P ( x i ) I(x_i) = -\log P(x_i) I(xi)=logP(xi)

  • 当事件发生的概率 P ( x i ) P(x_i) P(xi) 越小,它的不确定性越高,因此提供的“信息量”越大。
  • P ( x i ) P(x_i) P(xi) 为 1 时,自信息量为 0,因为这种事件是确定的,不带来额外信息。
  • 加上log,可以把非线性的概率转换为线性空间。
b. 熵是期望自信息量

熵的定义可以被理解为所有可能事件自信息量的期望值。对于一个离散随机变量 ( X ),它的熵表示为每个可能事件自信息量的期望:

H ( X ) = E [ I ( X ) ] = ∑ i = 1 n P ( x i ) I ( x i ) = − ∑ i = 1 n P ( x i ) log ⁡ P ( x i ) H(X) = \mathbb{E}[I(X)] = \sum_{i=1}^{n} P(x_i) I(x_i) = - \sum_{i=1}^{n} P(x_i) \log P(x_i) H(X)=E[I(X)]=i=1nP(xi)I(xi)=i=1nP(xi)logP(xi)

因此,熵是每个可能事件的概率与其自信息量乘积的加权和,反映了整个系统的平均不确定性。

3. 熵的性质

熵有以下一些重要性质:

  • 非负性:熵总是大于等于 0。对于确定事件(即 ( P(x_i) = 1 )),熵为 0;对于不确定性较大的分布,熵更高。

  • 均匀分布的熵最大:对于均匀分布,熵最大。例如,对于一个有 ( n ) 种可能事件且每个事件的概率都相等的系统,熵为:

    H ( X ) = log ⁡ n H(X) = \log n H(X)=logn

    这是因为均匀分布下不确定性最大,每个事件发生的概率一样,不提供更多信息。

  • 熵和概率的关系:熵的值取决于概率分布。若一个系统中所有事件的概率都接近 1,熵较小;若系统的事件概率分布接近均匀,熵较大。

4. 熵在机器学习中的应用

总结

熵作为信息论中的核心概念,衡量了系统的不确定性。通过从自信息量推导出的熵公式,我们能够量化一个系统中信息的平均量。在机器学习中,熵广泛用于决策树构造和其他分类任务中,以帮助衡量数据集的纯度或不确定性。

相关文章:

机器学习中的熵(Entropy)是什么?

在机器学习和信息理论中,熵(Entropy)是衡量不确定性和信息量的一个重要概念。熵最初由信息论的奠基人克劳德香农(Claude Shannon)在1948年提出,用来衡量信息源的信息不确定性。在机器学习中,熵被…...

JAVA基础:Lock不同的锁形式

1.1 可重入锁 synchronized就是一个可重入锁 使用lock时,常用的ReentryLock就是可重入锁 当一个线程在获得a对象锁之后,可以继续重复获得对象锁 代码形式就是 线程调用同步代码段,在没有执行完毕前,又调用了该对象的另一个同步…...

【LeetCode每日一题】——679.24 点游戏

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 回溯 二【题目难度】 困难 三【题目编号】 679.24 点游戏 四【题目描述】 给定一个长度为4…...

【Conda】Conda命令详解:高效更新与环境管理指南

目录 1. Conda 更新命令1.1 更新 Conda 核心1.2 更新所有包 2. 严格频道优先级3. 强制安装特定版本4. 创建与管理环境4.1 创建新环境4.2 激活和停用环境4.3 导出和导入环境4.4 删除环境 5. 清理缓存总结 Conda 是一个强大的包管理和环境管理工具,广泛应用于数据科学…...

机器学习:回归模型和分类模型的评估方法介绍

回归模型和分类模型评估方法详解 一、回归模型评估方法 (一)均方误差(MSE) 原理 均方误差是衡量回归模型预测值与真实值之间平均平方差的指标。它通过计算预测值与真实值之差的平方的平均值来评估模型的性能。其数学公式为&…...

担心学术窃取?阿里云加密的AI论文工具帮你锁紧数据!

学术窃取是任何研究人员都需要警惕的问题。随着技术的发展,虽然研究工作变得更加高效,但同时也暴露了更多的安全漏洞,尤其是在数据传输和存储过程中。为了解决这一问题,梅子AI论文工具采用了阿里云加密技术,提供了一个…...

leetcode经典算法题总结

针对leetcode算法题常见的五大经典复杂算法进行如下总结: (1)分治法 把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解…...

运维工具之ansible

Ansible 1.什么是ansible? ​ ansible是基于ssh架构的自动化运维工具,由python语言实现,通过ansible可以远程批量部署等。 2.部署前提 ​ 控制端需要安装ansible,被控制端要开启ssh服务,并允许远程登录,被管理主机需要安装py…...

基于 CSS Grid 的简易拖拉拽 Vue3 组件,从代码到NPM发布(1)- 拖拉拽交互

基于特定的应用场景,需要在页面中以网格的方式,实现目标组件在网格中可以进行拖拉拽、修改大小等交互。本章开始分享如何一步步从代码设计,最后到如何在 NPM 上发布。 请大家动动小手,给我一个免费的 Star 吧~ 大家如果发现了 Bug…...

【华为HCIP实战课程六】OSPF邻居关系排错网络子网掩码问题,网络工程师

一、链路上网络和掩码引发的OSPF邻居问题 R3和R4已经建立正常的ospf邻居关系 更改IP地址前R3接口IP地址 interface Serial2/0/0 link-protocol ppp ip address 10.1.34.3 255.255.255.240 [R3-Serial2/0/0]ip address 10.1.88.2 255.255.255.240 更改为10.1.88.2 R3和R4虽…...

基础教程 | 用VuePress搭建一个简单的个人博客(附源码)

先附上自己个人博客页面:https://illusionno.github.io/ 源码也在这里:https://github.com/illusionno/my-blog (如果觉得有帮助,可以点颗star✨) 使用的主题是vuepress-theme-reco2.x,并在上面进行了一些调…...

Ubuntu20.04,编译安装BCC

https://github.com/iovisor/bcc/blob/master/INSTALL.md 一、内核配置 In general, to use these features, a Linux kernel version 4.1 or newer is required. In addition, the kernel should have been compiled with the following flags set: CONFIG_BPFy CONFIG_BP…...

# 显卡算力参数对比

显卡算力参数对比 文章目录 显卡算力参数对比A 显卡参数查询B 显卡性能对比: 综合看:T4最具性价比 A 显卡参数查询 查询网址:https://www.techpowerup.com/gpu-specs/ ,以下列出部分: Product NameGPU ChipReleasedB…...

掌握RocketMQ4.X消息中间件(一)-RocketMQ基本概念与系统架构

1 MQ介绍 MQ(Message Quene) : 翻译为 消息队列,别名为 消息中间件,通过典型的 生产者和消费者模型,生产者不断向消息队列中生产消息,消费者不断的从队列中获取消息。因为消息的生产和消费都是异步的,而且只关心消息的发送和接收&#xff0c…...

实际开发中,java开发的准备工作

实际开发中,java开发的准备工作 一、IDEA工具环境设置 1、编码设置...

SQL进阶技巧:Order by 中 NULLS LAST特性使用?

目录 1 需求描述 2 数据准备 3 问题分析 4 小结 如果觉得本文对你有帮助,想进一步学习SQL语言这门艺术的,那么不妨也可以选择去看看我的博客专栏 ,部分内容如下: 数字化建设通关指南 专栏 原价99,现在活动价59…...

Redis:cpp.redis++类型操作

Redis:cpp.redis类型操作 stringsetmsetmgetgetrangesetrangeincrbydecrby listlpushrpushlrangellenlpoprpopblpopbrpop setsaddsmemeberssismemberscardspopsintersinterstore hashhsethgethexistshdelhkeyshvalshmsethmget zsetzaddzrangezcardzremzscorezrank 总…...

感冒用药记录

问题描述:国庆感冒了,头昏喉咙不舒服 用药过程: – 前3天:未用药,不好也不坏 – 中间2天:开始喉痛,使用复方氨酚烷胺胶囊【含对乙酰氨基酚】,基本没有效果 – 后面1天:开…...

JMeter性能测试时,如何做CSV参数化

在现代软件开发中,性能测试是保证应用程序在高负载条件下稳定运行的重要环节。为了实现真实场景的测试,参数化技术应运而生。其中,CSV参数化是一种高效且灵活的方法,可以让测试人员通过外部数据文件驱动测试脚本,从而模…...

爬虫获取不同数据类型(如JSON,HTML)的处理方法以及图片相对URL地址的转换

当我们爬取图片的URL地址时,我们要确保它们都是有效的绝对URL,这样就可以直接用这些URL来下载图片了。但是很多时候,它们都不是绝对URL地址,因此我们需要它进行URL转换。 if img_url.startswith(//): 这个条件检查URL是否以//开头…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

MMaDA: Multimodal Large Diffusion Language Models

CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

ios苹果系统,js 滑动屏幕、锚定无效

现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践

01技术背景与业务挑战 某短视频点播企业深耕国内用户市场,但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大,传统架构已较难满足当前企业发展的需求,企业面临着三重挑战: ① 业务:国内用户访问海外服…...

Python学习(8) ----- Python的类与对象

Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...