机器学习中的熵(Entropy)是什么?
在机器学习和信息理论中,熵(Entropy)是衡量不确定性和信息量的一个重要概念。熵最初由信息论的奠基人克劳德·香农(Claude Shannon)在1948年提出,用来衡量信息源的信息不确定性。在机器学习中,熵被用于许多场景,例如分类任务中的决策树构建,用来衡量一个属性对分类的贡献。下面详细介绍熵的定义和推导过程。
1. 熵的定义
熵衡量的是一个随机变量的不确定性。对于一个离散的概率分布 ( P ) ,其熵(Entropy)定义为:
H ( X ) = − ∑ i = 1 n P ( x i ) log P ( x i ) H(X) = - \sum_{i=1}^{n} P(x_i) \log P(x_i) H(X)=−i=1∑nP(xi)logP(xi)
其中:
- ( H(X) ) 表示随机变量 ( X ) 的熵;
- ( x_i ) 表示随机变量 ( X ) 可能取的第 ( i ) 个值;
- ( P(x_i) ) 是 ( X ) 取值 ( x_i ) 的概率;
- 对数 ( \log ) 通常以 2 为底(对应单位为“比特”),但也可以使用自然对数(对应单位为“纳特”)。
熵反映的是从信息源中获得的信息的平均量。假如某个事件的概率越低(即它越不确定),一旦发生,就提供了更多的信息,因此熵越大。
2. 熵的推导
熵的推导可以从几个基本信息论概念入手:
a. 自信息量(Self-Information)
自信息量是衡量某个特定事件发生时,它为我们带来的信息量。对于某个事件 ( x_i ) 发生,它的自信息量定义为:
I ( x i ) = − log P ( x i ) I(x_i) = -\log P(x_i) I(xi)=−logP(xi)
- 当事件发生的概率 P ( x i ) P(x_i) P(xi) 越小,它的不确定性越高,因此提供的“信息量”越大。
- 当 P ( x i ) P(x_i) P(xi) 为 1 时,自信息量为 0,因为这种事件是确定的,不带来额外信息。
- 加上log,可以把非线性的概率转换为线性空间。
b. 熵是期望自信息量
熵的定义可以被理解为所有可能事件自信息量的期望值。对于一个离散随机变量 ( X ),它的熵表示为每个可能事件自信息量的期望:
H ( X ) = E [ I ( X ) ] = ∑ i = 1 n P ( x i ) I ( x i ) = − ∑ i = 1 n P ( x i ) log P ( x i ) H(X) = \mathbb{E}[I(X)] = \sum_{i=1}^{n} P(x_i) I(x_i) = - \sum_{i=1}^{n} P(x_i) \log P(x_i) H(X)=E[I(X)]=i=1∑nP(xi)I(xi)=−i=1∑nP(xi)logP(xi)
因此,熵是每个可能事件的概率与其自信息量乘积的加权和,反映了整个系统的平均不确定性。
3. 熵的性质
熵有以下一些重要性质:
-
非负性:熵总是大于等于 0。对于确定事件(即 ( P(x_i) = 1 )),熵为 0;对于不确定性较大的分布,熵更高。
-
均匀分布的熵最大:对于均匀分布,熵最大。例如,对于一个有 ( n ) 种可能事件且每个事件的概率都相等的系统,熵为:
H ( X ) = log n H(X) = \log n H(X)=logn
这是因为均匀分布下不确定性最大,每个事件发生的概率一样,不提供更多信息。
-
熵和概率的关系:熵的值取决于概率分布。若一个系统中所有事件的概率都接近 1,熵较小;若系统的事件概率分布接近均匀,熵较大。
4. 熵在机器学习中的应用
总结
熵作为信息论中的核心概念,衡量了系统的不确定性。通过从自信息量推导出的熵公式,我们能够量化一个系统中信息的平均量。在机器学习中,熵广泛用于决策树构造和其他分类任务中,以帮助衡量数据集的纯度或不确定性。
相关文章:
机器学习中的熵(Entropy)是什么?
在机器学习和信息理论中,熵(Entropy)是衡量不确定性和信息量的一个重要概念。熵最初由信息论的奠基人克劳德香农(Claude Shannon)在1948年提出,用来衡量信息源的信息不确定性。在机器学习中,熵被…...
JAVA基础:Lock不同的锁形式
1.1 可重入锁 synchronized就是一个可重入锁 使用lock时,常用的ReentryLock就是可重入锁 当一个线程在获得a对象锁之后,可以继续重复获得对象锁 代码形式就是 线程调用同步代码段,在没有执行完毕前,又调用了该对象的另一个同步…...

【LeetCode每日一题】——679.24 点游戏
文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 回溯 二【题目难度】 困难 三【题目编号】 679.24 点游戏 四【题目描述】 给定一个长度为4…...

【Conda】Conda命令详解:高效更新与环境管理指南
目录 1. Conda 更新命令1.1 更新 Conda 核心1.2 更新所有包 2. 严格频道优先级3. 强制安装特定版本4. 创建与管理环境4.1 创建新环境4.2 激活和停用环境4.3 导出和导入环境4.4 删除环境 5. 清理缓存总结 Conda 是一个强大的包管理和环境管理工具,广泛应用于数据科学…...
机器学习:回归模型和分类模型的评估方法介绍
回归模型和分类模型评估方法详解 一、回归模型评估方法 (一)均方误差(MSE) 原理 均方误差是衡量回归模型预测值与真实值之间平均平方差的指标。它通过计算预测值与真实值之差的平方的平均值来评估模型的性能。其数学公式为&…...
担心学术窃取?阿里云加密的AI论文工具帮你锁紧数据!
学术窃取是任何研究人员都需要警惕的问题。随着技术的发展,虽然研究工作变得更加高效,但同时也暴露了更多的安全漏洞,尤其是在数据传输和存储过程中。为了解决这一问题,梅子AI论文工具采用了阿里云加密技术,提供了一个…...
leetcode经典算法题总结
针对leetcode算法题常见的五大经典复杂算法进行如下总结: (1)分治法 把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解…...

运维工具之ansible
Ansible 1.什么是ansible? ansible是基于ssh架构的自动化运维工具,由python语言实现,通过ansible可以远程批量部署等。 2.部署前提 控制端需要安装ansible,被控制端要开启ssh服务,并允许远程登录,被管理主机需要安装py…...

基于 CSS Grid 的简易拖拉拽 Vue3 组件,从代码到NPM发布(1)- 拖拉拽交互
基于特定的应用场景,需要在页面中以网格的方式,实现目标组件在网格中可以进行拖拉拽、修改大小等交互。本章开始分享如何一步步从代码设计,最后到如何在 NPM 上发布。 请大家动动小手,给我一个免费的 Star 吧~ 大家如果发现了 Bug…...

【华为HCIP实战课程六】OSPF邻居关系排错网络子网掩码问题,网络工程师
一、链路上网络和掩码引发的OSPF邻居问题 R3和R4已经建立正常的ospf邻居关系 更改IP地址前R3接口IP地址 interface Serial2/0/0 link-protocol ppp ip address 10.1.34.3 255.255.255.240 [R3-Serial2/0/0]ip address 10.1.88.2 255.255.255.240 更改为10.1.88.2 R3和R4虽…...

基础教程 | 用VuePress搭建一个简单的个人博客(附源码)
先附上自己个人博客页面:https://illusionno.github.io/ 源码也在这里:https://github.com/illusionno/my-blog (如果觉得有帮助,可以点颗star✨) 使用的主题是vuepress-theme-reco2.x,并在上面进行了一些调…...
Ubuntu20.04,编译安装BCC
https://github.com/iovisor/bcc/blob/master/INSTALL.md 一、内核配置 In general, to use these features, a Linux kernel version 4.1 or newer is required. In addition, the kernel should have been compiled with the following flags set: CONFIG_BPFy CONFIG_BP…...
# 显卡算力参数对比
显卡算力参数对比 文章目录 显卡算力参数对比A 显卡参数查询B 显卡性能对比: 综合看:T4最具性价比 A 显卡参数查询 查询网址:https://www.techpowerup.com/gpu-specs/ ,以下列出部分: Product NameGPU ChipReleasedB…...

掌握RocketMQ4.X消息中间件(一)-RocketMQ基本概念与系统架构
1 MQ介绍 MQ(Message Quene) : 翻译为 消息队列,别名为 消息中间件,通过典型的 生产者和消费者模型,生产者不断向消息队列中生产消息,消费者不断的从队列中获取消息。因为消息的生产和消费都是异步的,而且只关心消息的发送和接收,…...

实际开发中,java开发的准备工作
实际开发中,java开发的准备工作 一、IDEA工具环境设置 1、编码设置...

SQL进阶技巧:Order by 中 NULLS LAST特性使用?
目录 1 需求描述 2 数据准备 3 问题分析 4 小结 如果觉得本文对你有帮助,想进一步学习SQL语言这门艺术的,那么不妨也可以选择去看看我的博客专栏 ,部分内容如下: 数字化建设通关指南 专栏 原价99,现在活动价59…...
Redis:cpp.redis++类型操作
Redis:cpp.redis类型操作 stringsetmsetmgetgetrangesetrangeincrbydecrby listlpushrpushlrangellenlpoprpopblpopbrpop setsaddsmemeberssismemberscardspopsintersinterstore hashhsethgethexistshdelhkeyshvalshmsethmget zsetzaddzrangezcardzremzscorezrank 总…...
感冒用药记录
问题描述:国庆感冒了,头昏喉咙不舒服 用药过程: – 前3天:未用药,不好也不坏 – 中间2天:开始喉痛,使用复方氨酚烷胺胶囊【含对乙酰氨基酚】,基本没有效果 – 后面1天:开…...

JMeter性能测试时,如何做CSV参数化
在现代软件开发中,性能测试是保证应用程序在高负载条件下稳定运行的重要环节。为了实现真实场景的测试,参数化技术应运而生。其中,CSV参数化是一种高效且灵活的方法,可以让测试人员通过外部数据文件驱动测试脚本,从而模…...
爬虫获取不同数据类型(如JSON,HTML)的处理方法以及图片相对URL地址的转换
当我们爬取图片的URL地址时,我们要确保它们都是有效的绝对URL,这样就可以直接用这些URL来下载图片了。但是很多时候,它们都不是绝对URL地址,因此我们需要它进行URL转换。 if img_url.startswith(//): 这个条件检查URL是否以//开头…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...