如何用深度神经网络预测潜在消费者
1. 模型架构
本项目采用的是DeepFM模型,其结构结合了FM(因子分解机)与深度神经网络(DNN),实现了低阶与高阶特征交互的有效建模。模型分为以下几层:
1.1 FM部分(因子分解机层)
FM层主要用于建模稀疏特征的低阶交互,其数学公式如下:
- 一阶部分(线性模型):
- y linear = ∑ i = 1 n w i x i y_{\text{linear}} = \sum_{i=1}^{n} w_i x_i ylinear=i=1∑nwixi
- 其中,wi是线性权重,xi是输入特征。
- 二阶部分(特征交互部分):
- y FM = ∑ i = 1 n ∑ j = i + 1 n ⟨ v i , v j ⟩ x i x j y_{\text{FM}} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j yFM=i=1∑nj=i+1∑n⟨vi,vj⟩xixj
- 其中,vi 和 vj 是特征嵌入向量,表示特征间的隐式交互,⟨vi,vj⟩ 是向量的内积,用于捕捉特征之间的低阶关系。
1.2 DNN部分(深度神经网络层)
DNN部分用于捕捉高阶特征交互。输入特征首先通过嵌入层映射为低维稠密向量,然后输入深度神经网络。DNN部分的计算公式如下:
- 第一层全连接层:
- h 1 = ReLU ( W 1 ⋅ x + b 1 ) h_1 = \text{ReLU}(W_1 \cdot x + b_1) h1=ReLU(W1⋅x+b1)
- 其中,W1和 b1 是第一层的权重矩阵和偏置,x是输入的嵌入向量,ReLU是激活函数。
- 第二层全连接层:
- h 2 = ReLU ( W 2 ⋅ h 1 + b 2 ) h_2 = \text{ReLU}(W_2 \cdot h_1 + b_2) h2=ReLU(W2⋅h1+b2)
- 类似地,W2和 b2 是第二层的权重矩阵和偏置。
- 输出层:
- y DNN = σ ( W 3 ⋅ h 2 + b 3 ) y_{\text{DNN}} = \sigma(W_3 \cdot h_2 + b_3) yDNN=σ(W3⋅h2+b3)
- 其中,σ是sigmoid激活函数,用于二分类预测。
1.3 DeepFM的融合
DeepFM模型将FM部分和DNN部分的输出进行融合,最终的输出为:
y output = σ ( y linear + y FM + y DNN ) y_{\text{output}} = \sigma(y_{\text{linear}} + y_{\text{FM}} + y_{\text{DNN}}) youtput=σ(ylinear+yFM+yDNN)
通过同时训练这三部分,模型能够同时捕捉到低阶和高阶特征交互。

2.1 训练流程
模型的训练流程包括以下步骤:
- 数据准备:对输入特征进行嵌入,并将稀疏特征转化为低维嵌入向量,同时将连续特征归一化。
- 前向传播:通过FM层和DNN层分别对低阶和高阶特征进行建模,并将两部分的结果结合起来,计算最终输出。
- 损失函数:使用二元交叉熵损失函数:
- L = − 1 N ∑ i = 1 N [ y i log ( y i ^ ) + ( 1 − y i ) log ( 1 − y i ^ ) ] L = -\frac{1}{N} \sum_{i=1}^{N} \left[ y_i \log(\hat{y_i}) + (1 - y_i) \log(1 - \hat{y_i}) \right] L=−N1i=1∑N[yilog(yi^)+(1−yi)log(1−yi^)]
- 其中,yi是真实标签,yi^是模型预测的概率。
- 优化器:模型使用Adam优化器来更新参数,调整学习率以获得最佳收敛效果。
2.2 评估指标
- AUC(Area Under Curve) :AUC用于评估模型的分类能力。AUC值越接近1,表示模型的分类性能越好。模型通过回调函数监控验证集上的AUC,以确定模型性能并进行早停或调整学习率。
- 关于深度实战社区
我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万+粉丝,拥有2篇国家级人工智能发明专利。
社区特色:深度实战算法创新
获取全部完整项目数据集、代码、视频教程,请点击下方名片
相关文章:
如何用深度神经网络预测潜在消费者
1. 模型架构 本项目采用的是DeepFM模型,其结构结合了FM(因子分解机)与深度神经网络(DNN),实现了低阶与高阶特征交互的有效建模。模型分为以下几层: 1.1 FM部分(因子分解机层&#…...
基于opencv答题卡识别判卷
我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝,拥有2篇国家级人工智能发明专利。 社区特色:深度实…...
ShardingSphere分库分表产品介绍
目录 一、ShardingSphere分库分表产品介绍 二、客户端分库分表与服务端分库分表 1、ShardingJDBC客户端分库分表 2、ShardingProxy服务端分库分表 3、ShardingSphere混合部署架构 三、分库分表,能不分就不分! 1、为什么要分库分表? 2、…...
Java经典面试题-多线程打印
threadsynchronized 就好像一个圆圈,A->B->C->A。。。。。 synchronized能够保证多个线程进入实,只用一个线程能进入。 /**多线程交替打印* */ public class Task {private final Object lock new Object();private int count 0;public st…...
FireFox简单设置设置
文章目录 一 设置不显示标签页1原来的样子2新的样子3操作方法 二 设置竖直标签页栏1 效果图2 设置方法 三 设置firefox不提醒更新 一 设置不显示标签页 1原来的样子 2新的样子 3操作方法 地址栏输入 about:config搜索icon,双击选项列表中browserchrome.site icons的值&#…...
Sollong手机——一站式Web3生态解决方案
从定义上讲,Web3公司也属于互联网公司,不过与传统互联网公司相比,他们有一个很明显的特征:他们不断尝试做去中心化的事,一步步将数据和金融的控制权从美联储(央行和金融机构)、苹果(…...
《重生到现代之从零开始的数据结构生活》—— 顺序表1
线性表 线性表:是n个具有相同特性的数据元素的有限序列。 线性表是⼀种在实际中⼴泛使 ⽤的 数据结构,常⻅的线性表有顺序表、链表、栈、队列、字符串等等 线性表在逻辑上是线性结构,也就说是连续的⼀条直线。但是在物理结构上并不⼀定是连…...
2本书让你轻松入门大模型!《大模型入门:技术原理与实战应用》+《自然语言处理:大模型理论与实践》
随着大模型技术的不断完善和普及,我们将进入一个由数据驱动、智能辅助的全新工作模式和生活模式。个人和企业将能够利用大模型来降本增效,并创造全新的用户体验。 人工智能是人类探索未来的重要领域之一,以GPT为代表的大模型应用一经推出在短…...
【JDK17 | 1】Java 17 深入剖析:新特性与变革
引言 Java 17 是 Oracle 发布的一个重要版本,它不仅是一个长期支持(LTS)版本,还引入了许多新的特性和改进,为开发者提供了更强大的工具和更优雅的编程体验。在本专栏的文章中,我们将对 Java 17 的新特性进行深入剖析,帮助开发者更好地理解和利用这一版本。 1. 新特性概述…...
strtok
strtok函数原型 char *strtok(conset char *str,conset char *dst); 功能: 将字符串分割成一个一个片段 当strtok()在参数str的字符串中发现参数dst中包含的分割字符时,则会将该字符改为\0字符 当连续出现…...
零信任身份安全的基本原则
零信任身份安全的核心原则就是 “持续验证,永不信任”。可以通过以下6个方面理解: 对“谁”和“什么”进行认证和授权 在零信任身份安全模型中,对用户和设备的身份进行认证和授权是至关重要的。认证是确认用户或设备是其所宣称的身份的过程…...
【AAOS】Android Automotive 9模拟器源码下载及编译
源码下载 repo init -u https://android.googlesource.com/platform/manifest -b android-9.0.0_r61 repo sync -c --no-tags --no-clone-bundle 源码编译 source build/envsetup.sh lunch aosp_car_x86_64-userdebug make -j8 运行效果 emulator Home界面 MAP All apps S…...
手动降级wsl中的numpy
下载完pytorch之后想验证一下cuda好不好使,在测试的时候发现一个warning python中报错如下 我下载的pytorch版本比较低,numpy太高,所以需要手动给numpy降级 pip install numpy\<2 降级后再进到python验证cuda就没有warning和报错了&…...
极客兔兔Gee-Cache Day7
protobuf配置: 从 Protobuf Releases 下载最先版本的发布包安装。解压后将解压路径下的 bin 目录 加入到环境变量即可。 如果能正常显示版本,则表示安装成功。 $ protoc --version libprotoc 3.11.2在Golang中使用protobuf,还需要protoc-g…...
R包:APAlyzer从RNA-seq数据计算APA表达丰度
文章目录 介绍教程实战案例数据脚本运行 介绍 今天安利APAlyzer工具,它是通过RNA-seq数据获取3′UTR APA, intronic APA等表达谱的R包。 APAlyzer将bam文件比对到PolyA-DB数据库识别APA。 Most eukaryotic genes produce alternative polyadenylation (APA) isofo…...
YOLOv11改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性
一、背景 目标检测和实例分割中的关键问题: 现有的大多数边界框回归损失函数在不同的预测结果下可能具有相同的值,这降低了边界框回归的收敛速度和准确性。 现有损失函数的不足: 现有的基于 ℓ n \ell_n ℓn范数的损失函数简单但对各种尺度…...
dayu_widgets-简介
前言: 越来越多的人开始使用python来做GUI程序,市面上却很少有好的UI控件。即使有也是走的商业收费协议,不敢使用,一个不小心就收到法律传票。 一、原始开源项目: 偶然在GitHub上发现了这个博主的开源项目。https://github.com/phenom-films…...
改变数组页面重新渲染的操作/那些操作不会重新渲染页面以及解决方法
在前端开发中,当数组数据发生变化时,是否会导致页面重新渲染,以及如何进行相关操作,这取决于使用的具体框架或库(如React、Vue等)及其内部机制。以下是对这一问题的详细解答: 一、会导致页面重…...
米哈游Android面试题汇总及参考答案
Java 的内存回收机制是如何工作的? 在 Java 中,内存回收主要由垃圾回收器(Garbage Collector)来完成。 Java 的内存主要分为堆(Heap)和栈(Stack)等区域。其中,对象主要分配在堆上。当创建一个对象时,会在堆上为其分配内存空间。 垃圾回收器主要负责回收不再被使用的对…...
搜维尔科技:【应用】Xsens动作捕捉技术为奇幻电影注入活力
在英格兰古朴的小镇和连绵起伏的群山之间,坐落着一个虚构的小镇Anghenfil,在这里有一个早已被人遗忘的传说。在这部由英国电影制片人Ryan Garry自编自导的奇幻电影《Every Legend Ends》中,这个传说即将变成可怕的现实。 怪物苏醒&#…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
