当前位置: 首页 > news >正文

代码随想录算法训练营第四十二天 | 01背包问题,你该了解这些、01背包问题,你该了解这些 滚动数组、 416. 分割等和子集

打卡第42天,搞搞01背包。

今日任务

  • 01背包问题,你该了解这些!
  • 01背包问题,你该了解这些! 滚动数组
  • 416.分割等和子集

背包问题1.0 :0-1 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

在这里插入图片描述
暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是o(2n)o(2^n)o(2n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

01背包

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 viv_ivi,价值是 wiw_iwi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 viv_ivi,wiw_iwi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000

0<viv_ivi,wiw_iwi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

代码随想录

  1. 确定 dp 以及下标定义
    dp[i][j] 表示从下标为 [0-i] 的物品里任意取,放进容量为 j 的背包,价值总和最大是多少。
    在这里插入图片描述

  2. 确定递推公式
    两个方向推出来dp[i][j]

    不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)

    放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

    所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

  3. 初始化
    首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。

    状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

  4. 确定遍历顺序
    二维数组的情况下 先遍历背包跟先遍历重量都可以
    一维数组的情况下 先遍历重量

  5. 推导
    在这里插入图片描述

#include <bits/stdc++.h>using namespace std;int main() {int n, v;scanf("%d %d", &n, &v);vector<int> weight(n);vector<int> value(n);for(int i = 0; i < n; i++) {scanf("%d", &weight[i]);scanf("%d", &value[i]);}// 初始化vector<vector<int>> dp(n, vector<int>(v + 1, 0));for(int i = weight[0]; i <= v; i++) {dp[0][i] = value[0];}for(int i = 1; i < n; i++) {for(int j = 1; j <= v; j++) {if(j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j - weight[i]] + value[i], dp[i - 1][j]);}}printf("%d", dp[n - 1][v]);return 0;
}

优化空间(滚动数组)

我们可以发现想知道dp[i][j] ,需要知道dp[i - 1][j - weight[i]] 和 dp[i - 1][j],都只是前一层的信息,所以我们可以用一个一维数组来保存信息,只不过我们的遍历顺序第一次遍历的是物品,第二层遍历的是背包,而且是从大到小遍历,因为想要知道大重量背包的最大价值总和,要知道前面的小重量背包的最大价值总和,而我们是用滚动数组保存,如果从小到大遍历,会改变小重量背包的最大价值总和。

#include <bits/stdc++.h>using namespace std;int main() {int n, v;scanf("%d %d", &n, &v);vector<int> weight(n);vector<int> value(n);for(int i = 0; i < n; i++) {scanf("%d", &weight[i]);scanf("%d", &value[i]);}// 初始化vector<int> dp(v + 1, 0);for(int i = weight[0]; i <= v; i++) {dp[i] = value[0];}for(int i = 1; i < n; i++) {for(int j = v; j >= 1; j--) {if(j < weight[i]) dp[j] = dp[j];else dp[j] = max(dp[j - weight[i]] + value[i], dp[j]);}}printf("%d", dp[v]);return 0;
}

416. 分割等和子集

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

我的题解

回溯暴力搜索,超时了哈哈哈

class Solution {
public:bool backtracking(vector<int>& nums, int sum, int starIndex) {if(sum == 0) return true;if(sum < 0) return false;for(int i = starIndex; i < nums.size(); i++) {sum -= nums[i];if(backtracking(nums, sum, i + 1)) return true;sum += nums[i];}return false;}bool canPartition(vector<int>& nums) {int sum = 0;for(int num : nums) sum += num;if(sum % 2 == 1) return false;sort(nums.begin(), nums.end());return backtracking(nums, sum / 2, 0);}
};

01背包做法,但是不是很理解。

class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0;for(int num : nums) sum += num;if(sum % 2 == 1) return false;vector<int> dp(sum / 2 + 1, 0);for(int i = nums[0]; i <= sum / 2; i++) dp[i] = nums[0]; // 初始化for(int i = 1; i < nums.size(); i++) {for(int j = sum / 2; j >= 1; j--) {if(j < nums[i]) dp[j] = dp[j];else dp[j] = max(dp[j - nums[i]] + nums[i], dp[j]);}}return dp[sum / 2] == sum / 2;}
};

代码随想录

class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0;// dp[i]中的i表示背包内总和// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了vector<int> dp(10001, 0);for (int i = 0; i < nums.size(); i++) {sum += nums[i];}// 也可以使用库函数一步求和// int sum = accumulate(nums.begin(), nums.end(), 0);if (sum % 2 == 1) return false;int target = sum / 2;// 开始 01背包for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}}// 集合中的元素正好可以凑成总和targetif (dp[target] == target) return true;return false;}
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数

相关文章:

代码随想录算法训练营第四十二天 | 01背包问题,你该了解这些、01背包问题,你该了解这些 滚动数组、 416. 分割等和子集

打卡第42天&#xff0c;搞搞01背包。 今日任务 01背包问题&#xff0c;你该了解这些&#xff01;01背包问题&#xff0c;你该了解这些&#xff01; 滚动数组416.分割等和子集 背包问题1.0 &#xff1a;0-1 背包 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weig…...

【Android】JNI静态与动态注册介绍

JNI的两种注册机制&#xff1a;静态注册和动态注册. 一、JNI介绍 JNI(Java Native Interface)&#xff0c;即Java本地接口&#xff0c;JNI是Java调用Native 语言的一种特性。通过JNI可以使得Java与C/C机型交互. 方式&#xff1a; 静态注册动态注册&#xff1a;需要提供Java中…...

【算法题解】22. 接雨水

这是一道 困难 题 题目来自&#xff1a; https://leetcode.cn/problems/trapping-rain-water/ 题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,…...

集合详解之(四)集合的遍历

文章目录&#x1f412;个人主页&#x1f3c5;JavaSE系列专栏&#x1f4d6;前言&#xff1a;&#x1f380;ArrayList集合forEach()方法遍历&#x1f380;for循环遍历&#xff08;针对List集合&#xff09;&#x1fa85;增强for循环&#xff08;也支持Set集合&#xff09;&#x…...

【I2C】通用驱动i2c-dev分析

文章目录1. 前言2. i2c-dev驱动的注册过程3. open_i2c_dev函数分析4. set_slave_addr函数分析5. i2c_read_bytes函数分析1. 前言 前面分析i2c-tool测试工具就是基于drivers/i2c/i2c-dev.c驱动来实现的。i2c-dev驱动在加载时会遍历所有的I2C总线(i2c_bus_type)上所有注册的adap…...

用GPT-4写代码不用翻墙了?Cursor告诉你:可以~~

目录 一、介绍 二、使用方法 三、其他实例 1.正则表达式 2.自动化测试脚本 3.聊聊技术 一、介绍 Cursor主要功能是根据用户的描述写代码或者进行对话&#xff0c;对话的范围仅限技术方面。优点是不用翻墙、不需要账号。Cursor基于GPT模型&#xff0c;具体什么版本不祥&#…...

硬件语言Verilog HDL牛客刷题day03 时序逻辑部分

1.VL21 根据状态转移表实现时序电路 1.题目&#xff1a; 某同步时序电路转换表如下&#xff0c;请使用D触发器和必要的逻辑门实现此同步时序电路&#xff0c;用Verilog语言描述。 2.解题思路 2.1 首先同步时序电路 &#xff0c; 时钟上升沿触发&#xff0c; 复位信号rst 低电…...

day31 ● 455.分发饼干 ● 376. 摆动序列 ● 53. 最大子序和

● 455.分发饼干 ● 376. 摆动序列 ● 53. 最大子序和 在本次的题目中&#xff0c;我们使用了贪心算法来解决三个问题&#xff1a;分发饼干、摆动序列、最大子序和。这三个问题都可以使用贪心算法来解决&#xff0c;而且贪心算法的时间复杂度相对较低&#xff0c;能够在较短的…...

MobTech 秒验|本机号码一键登录会泄露隐私吗

本机号码一键登录是一种新型的应用登录方式&#xff0c;它可以利用运营商的数据网关认证能力&#xff0c;实现手机号免密登录&#xff0c;提高用户体验和转化率&#xff0c;降低验证成本和流失率。本机号码一键登录支持三大运营商号码认证&#xff0c;3秒内完成手机号验证&…...

2023年供销合作社研究报告

第一章 行业概况 1.1 供销合作社概述 中华全国供销合作总社&#xff0c;是中华人民共和国全国供销合作社的联合组织。中华全国供销合作总社的前身可以追溯到1949年11月成立的中央合作事业管理局。在新中国成立初期&#xff0c;供销合作社就基本形成了自上而下、覆盖全国的组织…...

【ansible】实施任务控制

目录 实施任务控制 一&#xff0c;循环&#xff08;迭代&#xff09;--- loop 1&#xff0c;利用loop----item循环迭代任务 2&#xff0c;item---loop循环案例 1&#xff0c;定义item循环列表 2&#xff0c;通过变量应用列表格式 3&#xff0c;字典列表&#xff08;迭代嵌套子…...

49天精通Java,第11天,java接口和抽象类的异同,default关键字

目录一、什么是接口二、接口的特点三、接口和类的区别四、接口和抽象类的区别五、接口的声明方式六、default默认方法大家好&#xff0c;我是哪吒。 一、什么是接口 Java接口是一系列方法的声明&#xff0c;是一些方法特征的集合&#xff0c;一个接口只有方法的特征没有方法的…...

JAVA练习99-逆波兰表达式求值

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、题目-逆波兰表达式求值 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 4月5…...

恶意软件、恶意软件反杀技术以及反病毒技术的详细介绍

1.恶意软件简单介绍恶意软件是指在计算机系统上执行恶意任务的病毒、蠕虫和特洛伊木马的程序&#xff0c;通过破坏软件进程来实施控制。腾讯移动安全实验室发布的数据显示&#xff0c;恶意软件由多种威胁组成&#xff0c;会不断弹出&#xff0c;所以需要采取多种方法和技术来进…...

【数据库运维】mysql备份恢复练习

目录 数据库备份&#xff0c;数据库为school&#xff0c;素材如下 1.创建student和score表 2.为student表和score表增加记录 3.备份数据库school到/backup目录 4.备份MySQL数据库为带删除表的格式&#xff0c;能够让该备份覆盖已有数据库而不需要手动删除原有数据库 5.直接将My…...

刷题30-对称的二叉树

对称的二叉树 思路&#xff1a;用递归&#xff0c;首先明白递归中止的条件是什么 搬用别人的看法&#xff1a; 做递归思考三步&#xff1a; 1.递归的函数要干什么&#xff1f; 函数的作用是判断传入的两个树是否镜像。 输入&#xff1a;TreeNode left, TreeNode right 输出…...

精选简历模板

1.应届生通用简历模板&#xff08;.docx) 适用于应届生找工作的学生群体 https://download.csdn.net/download/weixin_43042683/87652099https://download.csdn.net/download/weixin_43042683/87652099 部分缩略图如下&#xff1a; 2.研究生通用简历模板&#xff08;.docx)…...

蓝桥杯嵌入式第十三届客观题解析

文章目录 前言一、题目1二、题目2三、题目3四、题目4五、题目5六、题目6七、题目7八、题目8九、题目9十、题目10总结前言 本篇文章将带大家来学习蓝桥杯嵌入式的客观题了,蓝桥杯嵌入式的客观题涉及到模电,数电,单片机等知识,需要非常扎实的基础,客观题不能急于求成只能脚…...

【Redis】线程问题

文章目录单线程版本演化工作流程为什么逐渐又加入了多线程特性?影响Redis性能的主要因素->网络I/O多线程工作流程Unix网络编程中的五种I/O模型I/O多路复用工作原理&#xff1a;select、poll、epoll为什么Redis快单线程与多线程的比较配置文件开启多线程单线程 版本演化 Re…...

【算法题】2498. 青蛙过河 II

题目&#xff1a; 给你一个下标从 0 开始的整数数组 stones &#xff0c;数组中的元素 严格递增 &#xff0c;表示一条河中石头的位置。 一只青蛙一开始在第一块石头上&#xff0c;它想到达最后一块石头&#xff0c;然后回到第一块石头。同时每块石头 至多 到达 一次。 一次…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用

摘要 神经影像技术对医学科学产生了深远的影响&#xff0c;推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下&#xff0c;基于神经血管耦合现象的多模态神经影像方法&#xff0c;通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里&#xff0c;本研…...

C++ Saucer 编写Windows桌面应用

文章目录 一、背景二、Saucer 简介核心特性典型应用场景 三、生成自己的项目四、以Win32项目方式构建Win32项目禁用最大化按钮 五、总结 一、背景 使用Saucer框架&#xff0c;开发Windows桌面应用&#xff0c;把一个html页面作为GUI设计放到Saucer里&#xff0c;隐藏掉运行时弹…...

IDEA中微服务指定端口启动

在使用IDEA开发SpringBoot微服务时&#xff0c;经常需要开启多个服务实例以测试负载均衡&#xff0c;以下几种方法开启不同端口。 直接在配置文件中指定 # application.propertiesserver.port8001指定VM参数 点击Modify options&#xff0c;选择Add VM options&#xff0c;值…...