当前位置: 首页 > news >正文

深度分离卷积

深度可分离卷积(Depthwise Separable Convolution)是一种高效的卷积操作,它将传统卷积操作分解为两个独立的步骤:深度卷积(Depthwise Convolution)逐点卷积(Pointwise Convolution),从而显著降低计算量和参数量。深度可分离卷积广泛应用于轻量级神经网络中,如 MobileNet、Xception 等。

深度可分离卷积分为两个步骤:

  1. Depthwise Convolution(深度卷积):

    • 对每个输入通道分别进行卷积操作,而不是像传统卷积那样,将所有输入通道和所有卷积核进行计算。
    • 每个输入通道仅使用一个卷积核来生成输出,不混合不同通道的信息。
    • 这一步减少了通道之间的交互和计算量。
  2. Pointwise Convolution(逐点卷积):

    • 使用 1x1 的卷积核对深度卷积的输出进行通道间的组合,通常用于调整通道数量。
    • 1x1 卷积有助于混合不同通道的信息,恢复特征的通道交互。

通过这种分解,深度可分离卷积与标准卷积相比,显著减少了计算成本和参数量

对比普通卷积与深度可分离卷积

1. 普通卷积的计算复杂度

对于一个大小为 D x D 的输入,C_in 输入通道和 C_out 输出通道的卷积操作,卷积核的大小为 K x K,其计算量为:

[
C_{\text{普通卷积}} = C_{in} \times C_{out} \times K \times K \times D \times D
]

2. 深度可分离卷积的计算复杂度

深度可分离卷积将计算分成两部分:

  • Depthwise Convolution 复杂度:
    [
    C_{\text{Depthwise}} = C_{in} \times K \times K \times D \times D
    ]

  • Pointwise Convolution 复杂度:
    [
    C_{\text{Pointwise}} = C_{in} \times C_{out} \times 1 \times 1 \times D \times D = C_{in} \times C_{out} \times D \times D
    ]

因此,深度可分离卷积的总计算量为:

[
C_{\text{深度可分离卷积}} = C_{in} \times K \times K \times D \times D + C_{in} \times C_{out} \times D \times D
]

与普通卷积相比,计算量减少了大约:

[
\frac{C_{\text{普通卷积}}}{C_{\text{深度可分离卷积}}} = \frac{C_{out}}{K^2 + C_{out}}
]

C_out 很大时,深度可分离卷积带来的计算节省非常明显。

代码实现

下面是使用 PyTorch 实现深度可分离卷积的示例:

import torch
import torch.nn as nn# 假设输入通道数为 3,输出通道数为 16,卷积核大小为 3x3
input_tensor = torch.randn(1, 3, 32, 32)  # (batch_size, channels, height, width)# 普通卷积
conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1)
output_conv = conv(input_tensor)# 深度可分离卷积
# 1. 深度卷积 (Depthwise Convolution)
depthwise_conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=1, groups=3)
output_depthwise = depthwise_conv(input_tensor)# 2. 逐点卷积 (Pointwise Convolution)
pointwise_conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=1)
output_pointwise = pointwise_conv(output_depthwise)print("普通卷积输出的形状:", output_conv.shape)
print("深度可分离卷积输出的形状:", output_pointwise.shape)

解释:

  1. Depthwise Convolution 中,groups 参数等于输入通道数,意味着每个输入通道独立与卷积核进行计算。
  2. Pointwise Convolution 中,使用 1x1 的卷积核,对深度卷积的输出进行逐点的通道组合。
  3. 计算量与参数量的显著减少:深度卷积与逐点卷积结合,能大幅降低计算复杂度和参数。

应用场景

  • MobileNet 系列模型大规模使用深度可分离卷积,以达到轻量化、适合移动设备部署的效果。
  • Xception 网络使用了极端深度可分离卷积的思想,进一步提升了卷积神经网络的效率。

总结

深度可分离卷积通过分解标准卷积,降低了计算量与参数量,是轻量级模型设计中的关键技术,特别适用于对计算资源要求较高的移动和嵌入式设备。

相关文章:

深度分离卷积

深度可分离卷积(Depthwise Separable Convolution)是一种高效的卷积操作,它将传统卷积操作分解为两个独立的步骤:深度卷积(Depthwise Convolution) 和 逐点卷积(Pointwise Convolution&#xff…...

JSONL 文件的检查和修订器

下面是一个JSONL 文件的检查和修订器,代码如下: import json import tkinter as tk from tkinter import filedialog, messageboxdef check_jsonl_file(input_file, log_file, output_file=None):errors = []valid_lines = []with open(input_file, r, encoding=utf-8) as in…...

输电线路悬垂线夹检测无人机航拍图像数据集,总共1600左右图片,悬垂线夹识别,标注为voc格式

输电线路悬垂线夹检测无人机航拍图像数据集,总共1600左右图片,悬垂线夹识别,标注为voc格式 输电线路悬垂线夹检测无人机航拍图像数据集介绍 数据集名称 输电线路悬垂线夹检测数据集 (Transmission Line Fittings Detection Dataset) 数据集…...

杭电合集小tips

刷HDU的题过程中&#xff0c;有一些值得注意的小问题&#xff0c;这里我踩坑之后记录下来&#xff0c;以便回顾与各位分享 一&#xff0c;关于语言的使用 主要大家还是用C和C多&#xff0c;但是注意的是&#xff0c;#include<bits/stdc.h>这个文件是G自带的&#xff0c…...

Python的输入输出函数

1.输入函数 Python的输入函数是input().input的引号里面是提示的内容&#xff0c;从键盘输入的任何字符都会当成字符串赋值给变量. n input("请输入:") print(type(n)) print(n) 输出结果为&#xff1a; 请输入:33 <class str> 33 2.输出函数 Python的内置…...

如何进行搭建与部署云主机?

云主机是一种基于虚拟化技术的服务器&#xff0c;云主机可以为用户提供一种非常高效且可扩展的计算机资源服务&#xff0c;主要是由操作系统和云硬盘等基础的计算组件所构成的&#xff0c;用户能够根据自身的需求来选择相关的配置规格&#xff0c;来满足不同的业务需求。 那么我…...

Biomamba求职| 国奖+4篇一作SCI

转眼间我也要参加秋招啦&#xff0c;认真的求职帖&#xff0c;各位老师/老板欢迎联系~其它需要求职的小伙伴也欢迎把简历发给我们&#xff0c;大家一起找工作。 一、基本信息 姓名&#xff1a;Biomamba 性别&#xff1a;男 出厂年份&#xff1a;1998 籍贯&#xff1a;浙江…...

Python 工具库每日推荐 【Pandas】

文章目录 引言Python数据处理库的重要性今日推荐:Pandas工具库主要功能:使用场景:安装与配置快速上手示例代码代码解释实际应用案例案例:销售数据分析案例分析高级特性数据合并和连接时间序列处理数据透视表扩展阅读与资源优缺点分析优点:缺点:总结【 已更新完 TypeScrip…...

电影选票选座系统|影院购票|电影院订票选座小程序|基于微信小程序的电影院购票系统设计与实现(源码+数据库+文档)

电影院订票选座小程序 目录 基于微信小程序的电影院购票系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户功能实现 2、管理员功能实现 &#xff08;1&#xff09;影院信息管理 &#xff08;2&#xff09;电影信息管理 &#xff08;3&#xff09;已完成…...

matlab初学习记录

文章目录 内置函数与变量matlab 编辑器数组等间距向量数组函数数组索引提取多个元素 对向量执行数组计算查看文档 画图添加注释 实践导入数据关系运算符分支恒星运动 matlab 学习看入门之旅 先计算等号右边再计算等号左边。 工作区记录等号右边的变量。 ; 表示的是抑制输出。…...

protobuf之Message

简介 Message是protobuf的消息抽象类&#xff0c;是其它通过protoc生成的自定义消息的基类 结构 #mermaid-svg-u5iAZNpfIH5hQrlP {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-u5iAZNpfIH5hQrlP .error-icon{fil…...

【redis-06】redis的stream流实现消息中间件

redis系列整体栏目 内容链接地址【一】redis基本数据类型和使用场景https://zhenghuisheng.blog.csdn.net/article/details/142406325【二】redis的持久化机制和原理https://zhenghuisheng.blog.csdn.net/article/details/142441756【三】redis缓存穿透、缓存击穿、缓存雪崩htt…...

二、MySQL的数据目录

文章目录 1. MySQL8的主要目录结构1.1 数据库文件的存放路径1.2 相关命令目录1.3 配置文件目录 2. 数据库和文件系统的关系2.1 查看默认数据库2.2 数据库在文件系统中的表示2.3 表在文件系统中的表示2.3.1 InnoDB存储引擎模式2.3.2 MyISAM存储引擎模式 2.4 小结 1. MySQL8的主要…...

2024.10月7~10日 进一步完善《电信资费管理系统》

一、新增的模块&#xff1a; 在原项目基础上&#xff0c;新增加了以下功能&#xff1a; 1、增加AspectJ 框架的AOP 异常记录和事务管理模块。 2、增加SpringMVC的拦截器&#xff0c;实现登录 控制页面访问权限。 3、增加 Logback日志框架&#xff0c;记录日志。 4、增加动态验…...

vue2项目的路由使用history模式,刷新会导致页面404的问题

在vue2项目中&#xff0c;如果我们使用的路由是history模式&#xff0c;刷新会导致页面404&#xff0c;解决方法很简单&#xff0c;在vue.config.js文件中的devServer下增加historyApiFallback: true; 代码如下: module.exports {devServer: {historyApiFallback: true,} }...

pytest框架之fixture测试夹具详解

前言 大家下午好呀&#xff0c;今天呢来和大家唠唠pytest中的fixtures夹具的详解&#xff0c;废话就不多说了咱们直接进入主题哈。 一、fixture的优势 ​ pytest框架的fixture测试夹具就相当于unittest框架的setup、teardown&#xff0c;但相对之下它的功能更加强大和灵活。 …...

【浏览器】如何正确使用Microsoft Edge

1、清理主页广告 如今的Microsoft Edge 浏览器 主页太乱了&#xff0c;各种广告推送&#xff0c;点右上角⚙️设置&#xff0c;把快速链接、网站导航、信息提要、背景等全部关闭。这样你就能得到一个超级清爽的主页。 网站导航       关闭 …...

打印1000年到2000年之间的闰年

我们要打印1000年到2000年之间的闰年&#xff0c;首先我们先输出1000年到2000年之间的所有的年份&#xff0c;同时我们将闰年的判断方法输入到其中 闰年需要满足下列两个条件的其中之一&#xff1a; 1.能被4整除但不能被100整除 2.能被400整除 打印1000年到2000年之间的闰年…...

nn.Identity()

在 PyTorch 中&#xff0c;nn.Identity()是一个简单的模块&#xff0c;它的作用是在模型中作为一个占位符或者不进行任何操作的层&#xff0c;直接返回输入。 一、使用方法 以下是一个简单的使用示例&#xff1a; import torch import torch.nn as nn# 创建一个 Identity 层…...

Java 快速排序

快速排序&#xff08;Quicksort&#xff09;是一种高效的排序算法&#xff0c;采用分治法&#xff08;Divide and Conquer&#xff09;的策略来把一个序列分为较小和较大的两个子序列&#xff0c;然后递归地排序两个子序列。以下是用Java实现的快速排序算法&#xff1a; publi…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...