从0开始深度学习(7)——线性回归的简洁实现
在从0开始深度学习(5)——线性回归的逐步实现中,我们手动编写了数据构造模块、损失函数模块、优化器等,但是在现代深度学习框架下,这些已经包装好了
本章展示如果利用深度学习框架简洁的实现线性回归
0 导入头文件
import random
import torch
import matplotlib.pyplot as plt
from torch.utils import data
import numpy as np
from torch import nn#nn是神经网络的缩写
1 生成数据集
和之前的数据一样
def synthetic_data(w, b, num_examples): #@save"""生成y=Xw+b+噪声"""X = torch.normal(0, 1, (num_examples, len(w)))y = torch.matmul(X, w) + by += torch.normal(0, 0.01, y.shape)return X, y.reshape((-1, 1))true_w = torch.tensor([2, -3.4])# 真实的W,是个二维张量
true_b = 4.2# 真实的b
features, labels = synthetic_data(true_w, true_b, 1000)# 生成1000个点# 绘制散点图
plt.scatter(features[:, 0].numpy(), labels.numpy(), 1.0)
plt.xlabel('Feature')
plt.ylabel('Label')
plt.title('Scatter Plot of Generated Data')
plt.show()
2 读取数据
直接使用torch中的TensorDataset
和DataLoader
。
TensorDataset
是 PyTorch 中的一个类,它将数据和对应的标签组合成一个数据集对象。DataLoader
是 PyTorch 提供的一个迭代器,可以用来批量加载数据,并且能够处理多线程数据读取、数据打乱等任务。
# 读取数据
def load_data(data_array,batch_size):dataset=data.TensorDataset(*data_array)return data.DataLoader(dataset,batch_size,shuffle=True)batch_size=10
data_iter=load_data((features,labels),batch_size)
3 定义模型
直接使用torch自带的神经网络中的全连接层,全连接层和线性回归模型都使用线性变换来生成输出, 所以可以用全连接层来实现线性回归
net = nn.Sequential(nn.Linear(2, 1))
# 第一个参数是输出的特征形状,第二个是输出的特征形状
# 因为我们的w是个二维向量,所以这里的形状是2
4 初始化参数
我们的函数是 y = w x + b y=wx+b y=wx+b,所以有一个权重 w w w和偏置项 b b b
#初始化权重,通常情况下,权重可以从一个正态分布中初始化,这样可以确保权重的初始值既不是太大也不是太小,有助于模型的收敛。
net[0].weight.data.normal_(0,0.01)# 从均值为 0、标准差为 0.01 的正态分布中初始化权重。
#初始化偏置项,偏置通常初始化为 0
net[0].bias.data.fill_(0)
5 定义损失函数和优化器
之前是手写的,这里我们可以直接使用torch自带的
# 定义损失函数
loss=nn.MSELoss()
#定义优化算法
trainer=torch.optim.SGD(net.parameters(),lr=0.01)
#第一个参数是指,返回所有需要更新的参数,第二个是学习率
6 训练模型
注意: 每次都要初始化梯度为0,避免梯度累积,每次反向传播之前将梯度清零,可以确保每次更新都是基于当前批次的数据
total_epochs=3
for epoch in range(total_epochs):for X,y in data_iter:# X是特征数据,y是标签l=loss(net(X),y)# 前向传播,生成预测,并计算损失trainer.zero_grad()# 初始化梯度l.backward()# 反向传播计算梯度trainer.step()# 调用优化器更新参数l=loss(net(features),labels)print(f'epoch {epoch + 1}, loss {l:f}')
7 评估模型
最后和我们的真实权重 w w w和偏置项 b b b做差,观察差距
w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)
相关文章:
从0开始深度学习(7)——线性回归的简洁实现
在从0开始深度学习(5)——线性回归的逐步实现中,我们手动编写了数据构造模块、损失函数模块、优化器等,但是在现代深度学习框架下,这些已经包装好了 本章展示如果利用深度学习框架简洁的实现线性回归 0 导入头文件 im…...
【网络安全 | Java代码审计】华夏ERP(jshERP)v2.3
未经许可,不得转载。 文章目录 技术框架开发环境代码审计权限校验绕过SQL注入Fastjson反序列化命令执行存储型XSS越权/未授权重置密码越权/未授权删除用户信息越权/未授权修改用户信息会话固定安全建议项目地址:https://github.com/jishenghua/jshERP 技术框架 核心框架:Sp…...
Setting the value of ‘*‘ exceeded the quota
H5之localStorage限额报错quota_exceeded the quota-CSDN博客 Uncaught DOMException: Failed to set a named property on Storage: Setting the value of background exceeded the quota. 超出了 localStorage 的最大长度。...
前端页面模块修改成可动态生成数据模块——大部分数据为GPT生成(仅供学习参考)
前端页面模块修改成可动态生成数据模块: 这些案例展示了如何通过Blade模板将前端页面模块变成可动态生成的模板。通过巧妙使用Blade语法、控制结构、CSS/JS分离、组件复用等技巧,可以大大提高代码的灵活性和复用性。在Laravel的Controller中准备好数据并…...

5.错误处理在存储过程中的重要性(5/10)
错误处理在存储过程中的重要性 引言 在数据库编程中,存储过程是一种重要的组件,它允许用户将一系列SQL语句封装成一个单元,以便重用和简化数据库操作。然而,像任何编程任务一样,存储过程中的代码可能会遇到错误或异常…...

【WebGis开发 - Cesium】如何确保Cesium场景加载完毕
目录 引言一、监听场景加载进度1. 基础代码2. 加工代码 二、进一步封装代码1. 已知存在的弊端2. 封装hooks函数 三、使用hooks方法1. 先看下效果2. 如何使用该hooks方法 三、总结 引言 本篇为Cesium开发的一些小技巧。 判断Cesium场景是否加载完毕这件事是非常有意义的。 加载…...

【数据结构】6道经典链表面试题
目录 1.返回倒数第K个节点【链接】 代码实现 2.链表的回文结构【链接】 代码实现 3.相交链表【链接】 代码实现 4.判断链表中是否有环【链接】 代码实现 常见问题解析 5.寻找环的入口点【链接】 代码实现1 代码实现2 6.随机链表的复制【链接】 代码实现 1.…...

等保测评1.0到2.0的演变发展
中国等保测评的演变 作为中国强化网络安全监管制度的重要组成部分,信息安全等级保护测评不是一个新概念,可以追溯到1994年和2007年发布的多项管理规则(通常称为等保测评 1.0规则),根据这些规则,网络运营商…...
yum 源配置
在/etc/yum.repo.d目录下 格式: [repository_name] nameRepository description baseurlhttp://repository_url enabled1 gpgcheck0 gpgkeyfile:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7 其中: [repository_name]:源的标识名称,…...

通过AI技术克服自动化测试难点(上)
本文我们一起分析一下AI技术如何解决现有的自动化测试工具的不足和我们衍生出来的新的测试需求。 首先我们一起看一下计算机视觉的发展历史,在上世纪70年代,处于技术萌芽期,由字符的识别技术慢慢进行演化,发展到现在,人…...
等保测评:如何建立有效的网络安全监测系统
等保测评中的网络安全监测系统建立 在建立等保测评中的网络安全监测系统时,应遵循以下步骤和策略: 确定安全等级和分类:首先,需要根据信息系统的安全性要求、资产的重要性和风险程度等因素,确定网络系统的安全等级&…...
yjs12——pandas缺失值的处理
1.缺失值的表示 正常来说,pandas缺失值是“nan”表示,但是有且文件可能自己改成了相应的别的符号 2.如何将缺失值符号改成nan xxx.replace(to_replace"...",valuenp.nan) 3.判断是否有缺失值 1.pd.notnull(xxx)————如果有缺失,…...
噪声分布 双峰,模拟函数 或者模拟方法 python人工智能 深度神经网络
在Python中模拟双峰分布,可以通过多种方法实现。以下是一些常用的方法: 1. **使用正态分布混合**: 可以通过组合两个正态分布来创建一个双峰分布。每个正态分布都有其自己的均值(mu)和标准差(sigma&…...

5个免费ppt模板网站推荐!轻松搞定职场ppt制作!
每次过完小长假,可以明显地感觉到,2024这一年很快又要结束了,不知此刻的你有何感想呢?是满载而归,还是准备着手制作年终总结ppt或年度汇报ppt呢? 每当说到制作ppt,很多人的第一反应,…...
HTML5+Css3(背景属性background)
css背景属性 background 1. background-color背景颜色 背景颜色可以用“十六进制”、“rgb()”、“rgba()”或“英文单词”表示 2. background-image:url(路径);背景图片 也可以写成 background:url(); 3. background-repeat背景重复 属性值: - repeat:x,y平铺…...

高亚科技助力优巨新材,打造高效数字化研发项目管理平台
近日,中国企业管理软件资深服务商高亚科技与广东优巨先进新材料股份有限公司(以下简称“优巨新材”)正式签署合作协议,共同推进产品研发管理数字化升级。此次合作的主要目标是通过8Manage PM项目管理系统,提升优巨新材…...

用布尔表达式巧解数字电路图
1.前置知识 明确AND,OR,XOR,NOR,NOT运算的规则 参见:E25.【C语言】练习:修改二进制序列的指定位 这里再补充一个布尔运算符:NOR,即先进行OR运算,再进行NOT运算 如下图为其数字电路的符号 注意到在OR符号的基础上,在尾部加了一个(其实由简化而来) 附:NOR的真值表 2.R-S触发…...
面试--开源框架面试题集合
Spring 谈谈自己对于 Spring IoC 的了解什么是 IoC?IoC 解决了什么问题?什么是 Spring Bean?将一个类声明为 Bean 的注解有哪些?Component 和 Bean 的区别是什么?注入 Bean 的注解有哪些?Autowired 和 Resource 的区别是什么?…...

如何选择医疗器械管理系统?盘谷医疗符合最新版GSP要求
去年12月7日,新版《医疗器械经营质量管理规范》正式发布,并于今年7月1日正式实施。新版GSP第五十一条提出“经营第三类医疗器械的企业,应当具有符合医疗器械经营质量管理要求的计算机信息系统,保证经营的产品可追溯”,…...

shell 脚本批量更新本地git仓库
文章目录 一、问题概述二、解决方法三、运行效果1. windows2. centos 一、问题概述 你是否遇到这样的场景: 本地git仓库克隆了线上的多个项目,需要更新时,无法象svn一样,选中多个项目一起更新。 只能苦逼的一个个选中,…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...