机器学习中的多模态学习:用C/C++实现高效模型
引言
多模态学习(Multimodal Learning)是一种机器学习技术,它旨在整合多种数据类型(例如图像、文本、音频、传感器数据等)来提升模型的预测精度和泛化能力。其应用领域包括情感分析、多模态推荐系统、智能驾驶、语音识别和自然语言处理等。由于多模态学习需要处理不同模态的数据并整合成统一的表示,因此需要高效的计算支持。C/C++语言因其高性能和资源管理能力,是实现多模态学习的理想选择。
本文将逐步展示如何使用C/C++从零构建一个多模态学习模型,涉及的数据预处理、特征提取、模态融合、模型训练与优化等具体实现步骤。
一、为什么使用C/C++实现多模态学习?
在机器学习领域,Python因其丰富的库和简洁的语法而成为主流语言。然而,C/C++在速度、内存控制、资源管理等方面有着独特的优势,特别适用于以下情况:
- 实时计算:多模态学习中的实时处理任务(例如在无人驾驶中实时检测)需要极高的计算效率。
- 资源管理:在边缘设备上运行多模态模型时,C/C++能更好地控制资源消耗,确保计算效率。
- 性能优化:C/C++在矩阵运算、线性代数计算上具有出色的性能,且支持多线程和并行计算。
接下来,我们将从数据预处理开始,逐步实现一个多模态学习模型。
二、构建多模态学习的步骤
1. 数据预处理
在多模态学习中,数据通常来源于多个渠道,格式差异大。数据预处理的主要任务是对不同模态的数据进行标准化,确保模型能处理不同的数据源。我们将分别展示图像和文本数据的预处理过程。
图像数据的预处理
图像数据的预处理通常包括读取、缩放、归一化等操作。我们可以使用OpenCV库来实现这些操作。
代码示例:
#include <opencv2/opencv.hpp>
#include <iostream>// 图像数据预处理函数
cv::Mat preprocessImage(const std::string &imagePath) {cv::Mat img = cv::imread(imagePath);if (img.empty()) {std::cerr << "无法读取图像: " << imagePath << std::endl;return cv::Mat();}cv::resize(img, img, cv::Size(224, 224)); // 调整大小img.convertTo(img, CV_32F, 1.0 / 255.0); // 归一化return img;
}int main() {cv::Mat processedImage = preprocessImage("image.jpg");if (!processedImage.empty()) {std::cout << "图像预处理完成" << std::endl;}return 0;
}
文本数据的预处理
文本数据的预处理涉及分词、去停用词、词向量化等步骤。我们将使用一个简单的分词函数,将文本数据处理成词向量的形式。
代码示例:
#include <fstream>
#include <string>
#include <vector>
#include <iostream>// 简单的分词函数
std::vector<std::string> preprocessText(const std::string &textPath) {std::vector<std::string> words;std::ifstream file(textPath);std::string word;while (file >> word) {words.push_back(word);}return words;
}int main() {std::vector<std::string> processedText = preprocessText("text.txt");std::cout << "文本词数: " << processedText.size() << std::endl;return 0;
}
2. 特征提取
在多模态学习中,特征提取是数据预处理的核心步骤。对于图像数据,可以使用卷积神经网络(CNN)来提取特征;而文本数据通常使用词向量或嵌入方法来获得特征表示。
图像特征提取
对于图像特征提取,我们可以使用OpenCV的DNN模块加载预训练模型(如ResNet)来获得图像的特征表示。
代码示例:
#include <opencv2/dnn.hpp>
#include <opencv2/opencv.hpp>cv::Mat extractImageFeatures(const cv::Mat &image) {cv::dnn::Net net = cv::dnn::readNetFromONNX("resnet50.onnx"); // 加载预训练模型net.setInput(cv::dnn::blobFromImage(image));return net.forward(); // 获取特征
}int main() {cv::Mat img = preprocessImage("image.jpg");cv::Mat features = extractImageFeatures(img);std::cout << "图像特征提取完成" << std::endl;return 0;
}
文本特征提取
文本的特征提取可以通过词向量模型来实现。例如使用GloVe或Word2Vec模型,将每个单词映射为一个向量,然后对整个句子进行特征平均。
代码示例:
#include <unordered_map>
#include <vector>
#include <string>
#include <iostream>// 词向量加载
std::unordered_map<std::string, std::vector<float>> loadWordEmbeddings(const std::string &path) {std::unordered_map<std::string, std::vector<float>> embeddings;std::ifstream file(path);std::string line;while (getline(file, line)) {std::istringstream iss(line);std::string word;iss >> word;std::vector<float> vec;float val;while (iss >> val) vec.push_back(val);embeddings[word] = vec;}return embeddings;
}// 文本特征提取函数
std::vector<float> extractTextFeatures(const std::vector<std::string> &words, const std::unordered_map<std::string, std::vector<float>> &embeddings) {std::vector<float> sentenceVector(embeddings.begin()->second.size(), 0.0f);for (const auto &word : words) {if (embeddings.count(word)) {const auto &vec = embeddings.at(word);for (size_t i = 0; i < vec.size(); ++i) {sentenceVector[i] += vec[i];}}}for (auto &val : sentenceVector) val /= words.size(); // 平均return sentenceVector;
}int main() {auto embeddings = loadWordEmbeddings("glove.txt");std::vector<std::string> words = preprocessText("text.txt");auto textFeatures = extractTextFeatures(words, embeddings);std::cout << "文本特征提取完成" << std::endl;return 0;
}
3. 多模态融合
在多模态学习中,模态融合是实现不同模态数据互补性的关键。常见的方法有早期融合和晚期融合。
早期融合
早期融合通过直接拼接各模态特征,形成一个联合特征向量,输入到模型中进行训练。
代码示例:
#include <Eigen/Dense>
#include <opencv2/opencv.hpp>// 简单的早期融合,将图像特征和文本特征拼接
Eigen::VectorXf fuseFeatures(const cv::Mat &imageFeatures, const std::vector<float> &textFeatures) {int totalSize = imageFeatures.total() + textFeatures.size();Eigen::VectorXf fusedFeatures(totalSize);memcpy(fusedFeatures.data(), imageFeatures.data, imageFeatures.total() * sizeof(float));memcpy(fusedFeatures.data() + imageFeatures.total(), textFeatures.data(), textFeatures.size() * sizeof(float));return fusedFeatures;
}
4. 模型设计与训练
完成特征提取和模态融合后,我们需要设计一个神经网络来学习联合特征。我们使用多层感知机(MLP)来作为分类模型,利用Eigen库来实现。
代码示例:
#include <Eigen/Dense>
#include <vector>
#include <cmath>
#include <iostream>// 定义MLP中的单层
Eigen::VectorXf denseLayer(const Eigen::VectorXf &input, const Eigen::MatrixXf &weights, const Eigen::VectorXf &bias) {Eigen::VectorXf output = weights * input + bias;return output.unaryExpr([](float x) { return 1.0f
结尾
以上便是本期的全部内容啦~
相关文章:
机器学习中的多模态学习:用C/C++实现高效模型
引言 多模态学习(Multimodal Learning)是一种机器学习技术,它旨在整合多种数据类型(例如图像、文本、音频、传感器数据等)来提升模型的预测精度和泛化能力。其应用领域包括情感分析、多模态推荐系统、智能驾驶、语音识…...
Java 运行机制及运行过程
Java的运行机制是基于Java虚拟机(Java Virtual Machine,JVM)的。Java程序在运行时,首先需要将源代码通过Java编译器编译为字节码文件(.class文件),然后由JVM解释执行或通过即时编译器࿰…...
IC开发——数字电路设计简介
1. 前言 我们说的数字电路,一般是指逻辑数字电路,即通过逻辑门组合成的电路,也即我们常说的逻辑IC。IC除了逻辑IC之外,还有模拟IC,存储IC等。 IC设计,需要学习数字电路,需要学习Verilog/VHDL等…...
openmmlab实现图像超分辨率重构
文章目录 前言一、图像超分辨率重构简介二、mmmagic实现图像超分 前言 超分辨率重构技术,作为计算机视觉领域的一项重要研究课题,近年来受到了广泛关注。随着科技的飞速发展,人们对图像质量的要求越来越高,尤其是在智能手机、监控…...
四、远程登录到Linux服务器
说明 linux 服务器是开发小组共享,正式上线的项目是运行在公网,因此需要远程登录到 Linux 进行项目管理或者开发 Xshell 1、特点 Xshell 是目前最好的远程登录到 Linux 操作的软件,流畅的速度并且完美解决了中文乱码的问题, 是目…...
Qt开发全指南:从基础到高级
1. Qt快速入门 • 什么是Qt框架? • 如何安装和配置Qt? • 使用Qt Creator:快速上手 • 项目结构与构建系统:qmake 和 CMake 2. 核心模块解析 • 信号与槽机制详解 • QtCore、QtGui 和 QtWidgets 模块介绍 • 并行编程&a…...
【算法】——双指针算法合集(力扣)
阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 第一题:移动零 第二题:复写零 第三题:快乐数 第四题:…...
小猿口算自动PK脚本
大家好,我是小黄。 近期,众多大学生炸鱼小猿口算APP,把一众小学生都快虐哭了,小黄听闻后,也跃跃欲试。对此小黄也参考网上的资料写了一个自动Pk的脚步。 首先大家需要安装一个pytorch环境过程中,如果小伙伴对此不熟悉的…...
蓝桥杯备赛(c/c++)
排序 9. 实现选择排序 10. 实现插入排序 11. 实现快速排序 12. 实现归并排序 13. 实现基数排序 14. 合并排序数组...
LLM大模型预测耗时的粗略估计以及sft和continue pre-train的区别
目录 预训练(Pretraining)与微调(SFT, Supervised Fine-Tuning)的区别 训练方式 数据组成 特殊标记(Special Tokens) Prompt处理 Session数据处理 训练目的 小结 LLM大模型预测耗时的粗略估计 1. …...
go和python打包项目对比
go源码 package mainimport ("fmt" )func main() {fmt.Println(" _____ _____ _____ _____")fmt.Println(" |2 ||2 ||2 ||2 |")fmt.Println(" | ^ || & || v || o |")fmt.Println(" | …...
EmEditor传奇脚本编辑器
主程序:EmEditor.exe 目前已有功能 可以自己指定一个快捷键 实现以下功能(默认快捷键为:F1) 以下全功能 都是鼠标所在行 按快捷键 (默认快捷键:F1) 1.在Merchant.txt中 一键打开NPC 没有…...
基于JAVA+SpringBoot+Vue的实习管理系统
基于JAVASpringBootVue的实习管理系统 前言 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN[新星计划]导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末附源码下载链接🍅 哈喽兄…...
Python自定义异常类:实际应用示例之最佳实践
Python自定义异常类:实际应用示例之最佳实践 前言 在软件开发中,合理处理异常是保证程序稳定性的重要环节。虽然 Python 内置了丰富的异常类型,但在处理复杂业务逻辑时,自定义异常类能够使代码更加清晰且具备可扩展性。 本文将…...
创新设计大师项骅:用卓越才华打造医疗科技新未来
项骅,这位在设计界声名鹊起的才俊,正准备在其璀璨的职业生涯中开启一个激动人心的新篇章。近日,他宣布即将进军医疗科技领域,这一决定在设计圈和医疗界引起了广泛关注。项骅计划以UX设计师的身份,致力于改善医疗服务的用户体验。谈到这个新挑战,他显得兴致勃勃:"我期待将我…...
云计算第四阶段 CLOUD2周目 01-03
国庆假期前,给小伙伴们更行完了云计算CLOUD第一周目的内容,现在为大家更行云计算CLOUD二周目内容,内容涉及K8S组件的添加与使用,K8S集群的搭建。最重要的主体还是资源文件的编写。 (*^▽^*) 环境准备: 主机清单 主机…...
Linux搭建Hadoop集群(详细步骤)
前言 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。 说白了就是实现一个任务可以在多个电脑上计算的过程。 一:准备工具 1.1 VMware 1.2L…...
MongoDB中如何实现相似度查询
在 MongoDB 中,进行相似度查询通常涉及文本搜索或基于特定字段的相似度计算。以下是几种常见的方法: 1. 使用文本索引和文本搜索 MongoDB 提供了文本索引功能,可以对字符串字段进行全文搜索。你可以使用 $text 操作符来执行文本搜索查询。 …...
F开头的词根词缀:ful
60.-ful (1)表形容词,“有…的” grateful a 感激的(grate感激) rueful a 后悔的(rue悔恨) willful a 任性的(will意志…任意办事) tactful a 圆滑的(tact手腕…...
【python开发笔记】-- python装饰器
装饰器: 不修改被装饰对象的源代码,也不修改调用方式的前提下,给被装饰对象添加新的功能 原则:开放封闭原则 开放:对扩展功能(增加功能开放),扩展功能的意思是在源代码不做任何改变…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
