当前位置: 首页 > news >正文

成像基础 -- 景深计算

景深计算

景深(Depth of Field, DOF)指的是在摄影中,能够清晰成像的物体前后距离的范围。景深的大小取决于多个因素,包括焦距、光圈值、物距以及相机感光元件的尺寸。

1. 景深的主要参数

  • 焦距( f f f):镜头的焦距,通常以毫米(mm)为单位。
  • 光圈( N N N):镜头的光圈值(f-stop),如 f/2.8、f/4 等。
  • 物距( d o d_o do):物体与镜头之间的距离,通常以米(m)为单位。
  • 感光元件的直径(Circle of Confusion, c c c):模糊圆的直径,通常是根据感光元件大小预设的一个数值。

2. 景深的计算公式

景深通常分为两个部分:

  • 前景深(Near Depth of Field, D O F n e a r DOF_{near} DOFnear
  • 后景深(Far Depth of Field, D O F f a r DOF_{far} DOFfar

景深总和为前景深和后景深的和:

D O F = D O F f a r − D O F n e a r DOF = DOF_{far} - DOF_{near} DOF=DOFfarDOFnear

3. 焦点前后的距离计算公式

前景深计算公式(最近可清晰成像的距离):

D O F n e a r = H ⋅ d o H + ( d o − f ) DOF_{near} = \frac{H \cdot d_o}{H + (d_o - f)} DOFnear=H+(dof)Hdo

后景深计算公式(最远可清晰成像的距离):

D O F f a r = H ⋅ d o H − ( d o − f ) DOF_{far} = \frac{H \cdot d_o}{H - (d_o - f)} DOFfar=H(dof)Hdo

其中:

  • 超焦距(Hyperfocal Distance, H H H):指的是当镜头对焦在此距离时,从相机到无限远的范围内都能清晰成像。计算公式为:
    H = f 2 N ⋅ c + f H = \frac{f^2}{N \cdot c} + f H=Ncf2+f

4. 景深计算的步骤

步骤 1:计算超焦距 H H H

H = f 2 N ⋅ c + f H = \frac{f^2}{N \cdot c} + f H=Ncf2+f

其中:

  • f f f 是镜头的焦距
  • N N N 是光圈值
  • c c c 是模糊圆的直径,根据感光元件大小确定(例如,对于全画幅相机, c ≈ 0.03 mm c \approx 0.03 \, \text{mm} c0.03mm

步骤 2:计算前景深 D O F n e a r DOF_{near} DOFnear

D O F n e a r = H ⋅ d o H + ( d o − f ) DOF_{near} = \frac{H \cdot d_o}{H + (d_o - f)} DOFnear=H+(dof)Hdo

步骤 3:计算后景深 D O F f a r DOF_{far} DOFfar

D O F f a r = H ⋅ d o H − ( d o − f ) DOF_{far} = \frac{H \cdot d_o}{H - (d_o - f)} DOFfar=H(dof)Hdo

步骤 4:计算总景深 D O F DOF DOF

D O F = D O F f a r − D O F n e a r DOF = DOF_{far} - DOF_{near} DOF=DOFfarDOFnear

5. 具体例子:

假设我们使用以下参数:

  • 焦距 f = 50 mm f = 50 \, \text{mm} f=50mm
  • 光圈 N = 2.8 N = 2.8 N=2.8
  • 物距 d o = 2 m d_o = 2 \, \text{m} do=2m(被摄物体距离相机 2 米)
  • 模糊圆 c = 0.03 mm c = 0.03 \, \text{mm} c=0.03mm(全画幅感光元件)

步骤 1:计算超焦距 H H H

H = 5 0 2 2.8 × 0.03 + 50 = 2500 0.084 + 50 ≈ 29811.9 mm ≈ 29.81 m H = \frac{50^2}{2.8 \times 0.03} + 50 = \frac{2500}{0.084} + 50 \approx 29811.9 \, \text{mm} \approx 29.81 \, \text{m} H=2.8×0.03502+50=0.0842500+5029811.9mm29.81m

步骤 2:计算前景深 D O F n e a r DOF_{near} DOFnear

D O F n e a r = 29.81 × 2 29.81 + ( 2 − 0.05 ) = 59.62 29.81 + 1.95 ≈ 59.62 31.76 ≈ 1.88 m DOF_{near} = \frac{29.81 \times 2}{29.81 + (2 - 0.05)} = \frac{59.62}{29.81 + 1.95} \approx \frac{59.62}{31.76} \approx 1.88 \, \text{m} DOFnear=29.81+(20.05)29.81×2=29.81+1.9559.6231.7659.621.88m

步骤 3:计算后景深 D O F f a r DOF_{far} DOFfar

D O F f a r = 29.81 × 2 29.81 − ( 2 − 0.05 ) = 59.62 29.81 − 1.95 ≈ 59.62 27.86 ≈ 2.14 m DOF_{far} = \frac{29.81 \times 2}{29.81 - (2 - 0.05)} = \frac{59.62}{29.81 - 1.95} \approx \frac{59.62}{27.86} \approx 2.14 \, \text{m} DOFfar=29.81(20.05)29.81×2=29.811.9559.6227.8659.622.14m

步骤 4:计算总景深 D O F DOF DOF

D O F = D O F f a r − D O F n e a r = 2.14 − 1.88 = 0.26 m DOF = DOF_{far} - DOF_{near} = 2.14 - 1.88 = 0.26\, \text{m} DOF=DOFfarDOFnear=2.141.88=0.26m

6. 总结

在这个例子中,当使用 50mm 焦距、f/2.8 光圈值,并对焦在 2 米远的物体上时,总景深约为 0.26米,其中:

  • 前景深(最近清晰的距离)为 1.88米
  • 后景深(最远清晰的距离)为 2.14米

相关文章:

成像基础 -- 景深计算

景深计算 景深(Depth of Field, DOF)指的是在摄影中,能够清晰成像的物体前后距离的范围。景深的大小取决于多个因素,包括焦距、光圈值、物距以及相机感光元件的尺寸。 1. 景深的主要参数 焦距( f f f)&a…...

Git中从dev分支恢复master分支

问题 需要从dev分支恢复master分支。之前搞错远程地址了,把master分支搞乱了,现在需要从dev分支恢复代码到master分支。 步骤 git checkout dev # 切换到 dev 分支 git branch -D master # 删除本地 master 分支 git checko…...

12.5 Linux_进程间通信_信号灯

概述 什么是信号灯: 信号灯也称为信号量,代表的是一类资源,其值表示系统中该资源的数量。 主要用途是实现进程、线程的同步。 什么是P/V操作: P操作就是申请资源,V操作就是释放操作。 信号灯的种类: …...

Linux——cp-mv-rm命令

cp命令 复制文件 cp test01.txt test02.txt 复制文件夹 cp -r hsy01 hsy02 mv命令 移动文件/文件夹 rm命令 删除文件 rm test.txt 删除文件夹(目录 rm -r hsy01 通配符 * 匹配任意内容 注意* 位置 强制删除-f root超级管理员...

上升点列

题目描述 在一个二维平面内,给定 n 个整数点 (xi​,yi​),此外你还可以自由添加 k 个整数点。 你在自由添加 k 个点后,还需要从 nk 个点中选出若干个整数点并组成一个序列,使得序列中任意相邻两点间的欧几里得距离恰好为 1 而且…...

刷题 链表

面试经典150题 - 链表 141. 环形链表 class Solution { public:bool hasCycle(ListNode *head) {ListNode* slow head, *fast head;while (fast ! nullptr && fast->next ! nullptr) {slow slow->next;fast fast->next->next;if (slow fast) {return…...

SQL 语法学习指南

目录 前言1. SQL 的基本概念1.1 SQL 的作用1.2 SQL 的特点 2. SQL 的基础语法2.1 数据查询 - SELECT 语句2.2 数据插入 - INSERT 语句2.3 数据更新 - UPDATE 语句2.4 数据删除 - DELETE 语句 3. SQL 的进阶语法3.1 聚合函数3.2 表连接 - JOIN3.3 子查询 4. SQL 学习建议4.1 多实…...

低代码可视化-uniapp商城首页小程序-代码生成器

在设计一个小程序的首页时,包含轮播图、通知栏和商品列表这三个元素是非常常见且有效的布局方式。这样的设计既能够吸引用户的注意力,又能够高效地展示信息和商品。 轮播组件 小程序首页幻灯片通常位于小程序的顶部或显著位置,通过滑动屏幕可…...

Vue3 富文本:WangEditor

wangEditor 开源 Web 富文本编辑器&#xff0c;开箱即用&#xff0c;配置简单 wangEditor 1. 安装依赖包 npm install wangeditor/editor-for-vuenext --save 2. 在引用页面加入如下代码 <template><div style"border: 1px solid #ccc"><Toolbar …...

Unity实现自定义图集(四)

以下内容是根据Unity 2020.1.0f1版本进行编写的   在之前的篇章中已经把自定义图集在编辑器上的使用,以及运行时所需的信息都准备好了,接下来就是魔改UGUI的Image组件,使其能够像Image那样运行时如果引用的资源有打自定义图集,则加载对应自定义图集的Texture。 1、思路 …...

k8s-pod的管理及优化设置

Pod是Kubernetes&#xff08;k8s&#xff09;中最小的资源管理组件&#xff0c;也是最小化运行容器化应用的资源对象。以下是对Pod的详细介绍&#xff1a; 一、Pod的基本概念 定义&#xff1a;Pod是Kubernetes中可以创建和管理的最小单元&#xff0c;是资源对象模型中由用户创…...

软件测试面试题大全

什么是软件测试&#xff1f; 答案&#xff1a;软件测试是一系列活动&#xff0c;旨在评估软件产品的质量&#xff0c;并验证它是否满足规定的需求。它包括执行程序或系统以识别任何缺陷、问题或错误&#xff0c;并确保软件产品符合用户期望。 软件测试的目的是什么&#xff1f…...

SQL第16课挑战题

1. 美国各州的缩写应始终用大写。更新所有美国地址&#xff0c;包括供应商状态&#xff08;Vendors表中的vend_state)和顾客状态&#xff08;customers表中的cust_state),使它们均为大写。 2. 第15课挑战题1要求将自己添加到customers表中&#xff0c;现在删除自己&#xff0c;…...

Python3 爬虫 中间人爬虫

中间人&#xff08;Man-in-the-Middle&#xff0c;MITM&#xff09;攻击是指攻击者与通信的两端分别创建独立的联系&#xff0c;并交换其所收到的数据&#xff0c;使通信的两端认为其正在通过一个私密的连接与对方直接对话&#xff0c;但事实上整个会话都被攻击者完全控制。在中…...

Leetcode 50. Pow ( x , n ) 快速幂、取模 C++实现

问题&#xff1a;Leetcode 50. Pow ( x , n ) 实现 pow(x, n) &#xff0c;即计算 x 的整数 n 次幂函数。 算法&#xff1a; 具体实现流程如下&#xff1a; 代码&#xff1a; class Solution { public:double myPow(double x, int N) {double ans 1;long long n N;if (n <…...

Java SE vs Java EE 与 JVM vs JDK vs JRE

Java SE&#xff08;Java Platform&#xff0c;Standard Edition&#xff09;: Java 平台标准版&#xff0c;Java 编程语言的基础&#xff0c;它包含了支持 Java 应用程序开发和运行的核心类库以及虚拟机等核心组件。Java SE 可以用于构建桌面应用程序或简单的服务器应用程序。…...

Linux YUM设置仓库优先级

1.安装yum-plugin-priorities优先级插件 yum install yum-plugin-priorities -y 2.设置仓库优先级 vim /etc/yum.repos.d/local.repo [local] namecentos7.5 baseurlfile:///mnt enable1 gpgcheck0 priority1 注释&#xff1a; priority1 #数字越小代表优先级越高&#xff…...

做一个不断更新的链接库

做一个不断更新的链接库 anaconda anaconda官方镜像源 anaconda清华镜像源 社区 CSDN CSDN-华为开发者空间 python开发库 股票爬虫 - akshare...

Ping32企业加密软件:保护数据安全

在数字化时代&#xff0c;数据安全已成为每个企业不可忽视的重要课题。无论是客户信息、财务报表&#xff0c;还是商业机密&#xff0c;数据的安全性直接关系到企业的声誉与运营。为了应对不断变化的安全威胁&#xff0c;选择一款可靠的企业加密软件尤为重要。在这里&#xff0…...

【Java】异常的处理-方式【主线学习笔记】

文章目录 前言1、处理概述2、Java异常处理机制&#xff08;方式&#xff09;方式一&#xff08;抓抛模型&#xff09;&#xff1a;try-catch-finally方式二&#xff1a;throws 异常类型总结 前言 Java是一门功能强大且广泛应用的编程语言&#xff0c;具有跨平台性和高效的执行…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...