当前位置: 首页 > news >正文

[C++]使用纯opencv部署yolov11目标检测onnx模型

yolov11官方框架:https://github.com/ultralytics/ultralytics

【算法介绍】

在C++中使用纯OpenCV部署YOLOv11进行目标检测是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN模块加载ONNX模型。

以下是一个大致的步骤指南,用于在C++中使用OpenCV部署YOLOv11(假设你已经有了YOLOv11的ONNX模型):

  1. 安装依赖
    • 确保你的开发环境已经安装了OpenCV 4.x(带有DNN模块)和必要的C++编译器。
  2. 准备模型
    • 将YOLOv11模型从PyTorch转换为ONNX格式。这通常涉及使用PyTorch的torch.onnx.export函数。
    • 确保你有YOLOv11的ONNX模型文件、配置文件(描述模型架构)和类别名称文件。
  3. 编写C++代码
    • 使用OpenCV的DNN模块加载ONNX模型。
    • 预处理输入图像(如调整大小、归一化等),以符合模型的输入要求。
    • 将预处理后的图像输入到模型中,并获取检测结果。
    • 对检测结果进行后处理,包括解析输出、应用非极大值抑制(NMS)和绘制边界框。
  4. 编译和运行
    • 使用C++编译器(如g++)编译你的代码。
    • 运行编译后的程序,输入图像或视频,并观察目标检测结果。

需要注意的是,由于YOLOv11是一个复杂的模型,其输出可能包含多个层的信息(如特征图、置信度、边界框坐标等),因此你需要仔细解析模型输出,并根据YOLOv11的具体实现进行后处理。

此外,由于OpenCV的DNN模块对ONNX的支持可能有限,某些YOLOv11的特性(如自定义层、特定的激活函数等)可能无法在OpenCV中直接实现。在这种情况下,你可能需要寻找替代方案,如使用其他深度学习库(如TensorRT、ONNX Runtime等)来加载和运行模型,并通过C++接口与这些库进行交互。

总之,在C++中使用纯OpenCV部署YOLOv11是一项具有挑战性的任务,需要深入理解YOLOv11的模型架构、OpenCV的DNN模块以及ONNX格式。如果你不熟悉这些领域,可能需要花费更多的时间和精力来学习和解决问题。

【效果展示】

【测试环境】

vs2019
cmake==3.24.3
opencv==4.8.0

【部分实现代码】

#include <iostream>
#include<opencv2/opencv.hpp>#include<math.h>
#include "yolov11.h"
#include<time.h>
#define  VIDEO_OPENCV //if define, use opencv for video.using namespace std;
using namespace cv;
using namespace dnn;template<typename _Tp>
int yolov11(_Tp& cls,Mat& img,string& model_path)
{Net net;if (cls.ReadModel(net, model_path, false)) {cout << "read net ok!" << endl;}else {return -1;}//生成随机颜色vector<Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(Scalar(b, g, r));}vector<OutputSeg> result;if (cls.Detect(img, net, result)) {DrawPred(img, result, cls._className, color);}else {cout << "Detect Failed!" << endl;}system("pause");return 0;
}template<typename _Tp>
int video_demo(_Tp& cls, string& model_path)
{vector<Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(Scalar(b, g, r));}vector<OutputSeg> result;cv::VideoCapture cap("D:\\car.mp4");if (!cap.isOpened()){std::cout << "open capture failured!" << std::endl;return -1;}Mat frame;
#ifdef VIDEO_OPENCVNet net;if (cls.ReadModel(net, model_path, true)) {cout << "read net ok!" << endl;}else {cout << "read net failured!" << endl;return -1;}#elseif (cls.ReadModel(model_path, true)) {cout << "read net ok!" << endl;}else {cout << "read net failured!" << endl;return -1;}#endifwhile (true){cap.read(frame);if (frame.empty()){std::cout << "read to end" << std::endl;break;}result.clear();
#ifdef VIDEO_OPENCVif (cls.Detect(frame, net, result)) {DrawPred(frame, result, cls._className, color, true);}
#elseif (cls.OnnxDetect(frame, result)) {DrawPred(frame, result, cls._className, color, true);}
#endifint k = waitKey(10);if (k == 27) { //esc break;}}cap.release();system("pause");return 0;
}int main() {string detect_model_path = "./yolo11n.onnx";Yolov11 detector;video_demo(detector, detect_model_path);
}

【视频演示】

C++使用纯opencv部署yolov11目标检测onnx模型演示源码+模型_哔哩哔哩_bilibili【测试环境】vs2019cmake==3.24.3opencv==4.8.0更多实现细节和源码下载参考博文https://blog.csdn.net/FL1623863129/article/details/142688868, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,将yolov5-6.2封装成一个类几行代码完成语义分割任务,C++使用纯opencv去部署yolov8官方obb旋转框检测,使用C#的winform部署yolov8的onnx实例分割模型,超变态的AI换脸工具,解除限制!解锁高级功能!,YOLOv8检测界面-PyQt5实现,基于onnx模型加密与解密深度学习模型保护方法介绍,基于opencv封装易语言读写视频操作模块支持视频读取和写出,使用易语言调用opencv进行视频和摄像头每一帧处理,使用纯opencv部署yolov5目标检测模型onnxicon-default.png?t=O83Ahttps://www.bilibili.com/video/BV1Nc4LekE1d/
【源码下载】

https://download.csdn.net/download/FL1623863129/89837170

相关文章:

[C++]使用纯opencv部署yolov11目标检测onnx模型

yolov11官方框架&#xff1a;https://github.com/ultralytics/ultralytics 【算法介绍】 在C中使用纯OpenCV部署YOLOv11进行目标检测是一项具有挑战性的任务&#xff0c;因为YOLOv11通常是用PyTorch等深度学习框架实现的&#xff0c;而OpenCV本身并不直接支持加载和运行PyTor…...

【Golang】Go 语言中的 time 包详解:全面掌握时间处理与应用

在 Go 语言中&#xff0c;time 包提供了强大的时间处理功能&#xff0c;适用于各种场景&#xff1a;获取当前时间、格式化和解析时间、计算时间间隔、设置定时器、处理超时等。在开发过程中&#xff0c;熟练掌握 time 包能够帮助我们轻松处理时间相关的操作&#xff0c;尤其是定…...

MySQL联合索引、索引下推Demo

1.联合索引 测试SQL语句如下&#xff1a;表test中共有4个字段(id, a, b, c)&#xff0c;id为主键 drop table test;#建表 create table test(id bigint primary key auto_increment,a int,b int,c int )#表中插入数据 insert into test(a, b, c) values(1,2,3),(2,3,4),(4,5,…...

linux上复制命令cp的常见用法-ubuntu

在Ubuntu中&#xff0c;cp命令是用于复制文件和目录的基本命令。以下是cp命令的常见用法和选项&#xff1a; 基本语法 cp [选项] 源文件 目标文件常用选项 -r 或 -R&#xff1a;递归复制目录及其内容。-p&#xff1a;保留源文件的属性&#xff08;如权限、所有者、时间戳&am…...

R语言绘制气泡图

气泡图是一种数据可视化图表。它通常在二维或三维空间中展示数据。两个变量决定气泡在平面或空间中的位置&#xff0c;第三个变量则以气泡大小呈现。能直观反映三个变量间关系&#xff0c;帮助用户快速理解数据特征和趋势&#xff0c;在数据分析和展示中广泛应用。 0x01 使用s…...

c++ sparsetable 模版

闭区间查询 支持 区间最大 区间最小 区间和 区间最大下标 区间最小下标 #include <bits/stdc.h> using namespace std;#ifndef NO_UNIQUE_ADDRESS # ifdef __has_cpp_attribute # if __has_cpp_attribute(no_unique_address) # define NO_UNIQUE_…...

创建线程池和封装锁

封装一个锁 1.封装一个Mutex class Mutex{public:Mutex(pthread_mutex_t * lock):_lock(lock){}void Lock(){pthread_mutex_lock(_lock);}void unLock(){pthread_mutex_unlock(_lock);}~Mutex(){}private:pthread_mutex_t *_lock; };2.封装一个LockGuard class LockGuard{pub…...

易图讯军用VR三维电子沙盘系统

深圳易图讯军用VR三维电子沙盘系统是一种集成了虚拟现实&#xff08;VR&#xff09;技术、三维建模技术、大数据分析、实时动态更新以及高度安全可靠的综合性军事指挥平台。该系统通过高精度三维模型真实再现战场环境&#xff0c;为指挥员提供沉浸式体验和交互操作的可能性&…...

LeetCode讲解篇之70. 爬楼梯

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 爬楼梯有一个规律&#xff0c;爬到第n层楼梯的方法种数 爬到第n - 1层楼梯的方法种数 爬到第n - 1层楼梯的方法种数 也就是我们爬到第n层楼梯其实是从第n - 1层楼梯向上爬1层或者是n - 2层楼梯向上爬2层转换来…...

论文写作不再难,论文初稿快速成型法!

撰写论文是每个学者的必修课&#xff0c;我非常明白撰写论文的不易。撰写过程中会遇到各种困扰&#xff0c;如思路不清晰、论证不充分、语言表达不准确等。在这里以我的经验分享给大家一个能快速完成论文初稿的秘诀“AI导师写作”&#xff0c;希望能帮助还在为论文发愁的你。 …...

linux系统,监控进程运行状态并自动重启崩溃后的进程的多种方法

系统进程运行异常崩溃后&#xff0c;自动重启的方法 有的公司&#xff0c;会写monitor守护进程&#xff0c;监视各个进程的运行状态&#xff0c;异常时&#xff0c;自动重启&#xff0c;但是这种&#xff0c;通过一个进程 监护一个进程的做法&#xff0c;不太完美&#xff0c;…...

【JavaEE初阶】深入理解不同锁的意义,synchronized的加锁过程理解以及CAS的原子性实现(面试经典题);

前言 &#x1f31f;&#x1f31f;本期讲解关于锁的相关知识了解&#xff0c;这里涉及到高频面试题哦~~~ &#x1f308;上期博客在这里&#xff1a;【JavaEE初阶】深入理解线程池的概念以及Java标准库提供的方法参数分析-CSDN博客 &#x1f308;感兴趣的小伙伴看一看小编主页&am…...

详解Redis分布式锁在SpringBoot的@Async方法中没锁住的坑

背景 Redis分布式锁很有用处&#xff0c;在秒杀、抢购、订单、限流特别是一些用到异步分布式并行处理任务时频繁的用到&#xff0c;可以说它是一个BS架构的应用中最高频使用的技术之一。 但是我们经常会碰到这样的一个问题&#xff0c;那就是我们都按照标准做了但有时运行着、…...

怎么做接口自动化测试

在分层测试的“金字塔”模型中&#xff0c;接口测试属于第二层服务集成测试范畴。相比UI层&#xff08;主要是WEB或APP&#xff09;自动化测试而言&#xff0c;接口自动化测试收益更大&#xff0c;且容易实现&#xff0c;维护成本低&#xff0c;有着更高的投入产出比&#xff0…...

网络编程(18)——使用asio协程实现并发服务器

十八、day18 到目前为止&#xff0c;我们以及学习了单线程同步/异步服务器、多线程IOServicePool和多线程IOThreadPool模型&#xff0c;今天学习如何通过asio协程实现并发服务器。 并发服务器有以下几种好处&#xff1a; 协程比线程更轻量&#xff0c;创建和销毁协程的开销较…...

Koa2项目实战2(路由管理、项目结构优化)

添加路由&#xff08;处理不同的URL请求&#xff09; 路由&#xff1a;根据不同的URL&#xff0c;调用对应的处理函数。 每一个接口服务&#xff0c;最核心的功能是&#xff1a;根据不同的URL请求&#xff0c;返回不同的数据。也就是调用不同的接口返回不同的数据。 在 Node…...

决战Linux操作系统

前言&#xff1a; 你是否也曾经为Linux所困扰过&#xff0c;在网上找的资料零零散散&#xff0c;是否学完Linux后还是懵懵懂懂&#xff0c;别怕&#xff0c;这篇博客是博主精心为你准备的&#xff0c;现在&#xff0c;就让我们一起来走进Linux的世界&#xff0c;决战Linux&…...

OceanBase 3.2.2 数据库问题处理记录

只记录OceanBase 数据库与OCP的异常处理&#xff0c;其它组件暂时不写录。 一、问题1&#xff1a; 说明&#xff1a;OMS 出现异常&#xff0c;无法访问(OB无法访问) OB数据库架构&#xff1a;1:1:1 原因&#xff1a;某一台OBserver因为内存问题&#xff0c;被服务器直接kill掉…...

HCIP--以太网交换安全(二)端口安全

端口安全 一、端口安全概述 1.1、端口安全概述&#xff1a;端口安全是一种网络设备防护措施&#xff0c;通过将接口学习的MAC地址设为安全地址防止非法用户通信。 1.2、端口安全原理&#xff1a; 类型 定义 特点 安全动态MAC地址 使能端口而未是能Stichy MAC功能是转换的…...

在 Windows 11 安卓子系统中安装 APK 的操作指南

这个软件好像不可以在纯android系统中使用&#xff08;不知道是缺了什么&#xff09;&#xff0c;其他对于android的虚拟机要不缺少必要功能组件&#xff0c;要不性能过于低下。本方法致力于在带有谷歌框架WSA中运行该APK 在 Windows 11 安卓子系统中安装 APK 的操作指南 本指…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

goreplay

1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具&#xff0c;可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长&#xff0c;测试它所需的工作量也会呈指数级增长。GoRepl…...

OPENCV图形计算面积、弧长API讲解(1)

一.OPENCV图形面积、弧长计算的API介绍 之前我们已经把图形轮廓的检测、画框等功能讲解了一遍。那今天我们主要结合轮廓检测的API去计算图形的面积&#xff0c;这些面积可以是矩形、圆形等等。图形面积计算和弧长计算常用于车辆识别、桥梁识别等重要功能&#xff0c;常用的API…...

Linux中INADDR_ANY详解

在Linux网络编程中&#xff0c;INADDR_ANY 是一个特殊的IPv4地址常量&#xff08;定义在 <netinet/in.h> 头文件中&#xff09;&#xff0c;用于表示绑定到所有可用网络接口的地址。它是服务器程序中的常见用法&#xff0c;允许套接字监听所有本地IP地址上的连接请求。 关…...