当前位置: 首页 > news >正文

Springboot 整合 Java DL4J 实现企业门禁人脸识别系统

🧑 博主简介:历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程高并发设计Springboot和微服务,熟悉LinuxESXI虚拟化以及云原生Docker和K8s,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。

在这里插入图片描述


在这里插入图片描述

Spring Boot 整合 Deeplearning4j 实现企业门禁人脸识别系统

一、引言

在当今数字化时代,企业对于安全性和效率的要求越来越高。传统的门禁系统如钥匙、密码等存在易丢失易被破解等问题。而人脸识别技术作为一种非接触式高效准确的身份验证方式,正逐渐成为企业门禁系统的首选。本文将详细介绍如何使用 Spring Boot 整合 Java Deeplearning4j 实现一个企业门禁人脸识别系统,通过识别员工面部特征实现快速身份验证,提高安全性通行效率

二、神经网络选择

本案例中我们选择使用卷积神经网络(Convolutional Neural NetworkCNN)来实现人脸识别。CNN 是一种专门用于处理图像数据的神经网络,具有以下优点:

  • 能够自动提取图像的特征,减少了人工特征提取的工作量。
  • 对图像的平移、旋转、缩放等具有一定的不变性,提高了识别的准确性。
  • 可以处理大规模的图像数据,适用于企业门禁系统中可能出现的大量员工面部图像。

选择理由

  • 人脸识别是一个复杂的任务,需要对图像中的面部特征进行准确的提取和识别。CNN 能够自动学习图像的特征,并且在图像识别领域取得了非常好的效果。
  • 企业门禁系统需要快速准确地识别员工的面部特征,以提高通行效率。CNN 可以在较短的时间内对图像进行处理,满足企业门禁系统的实时性要求。
  • 随着深度学习技术的不断发展,CNN 的性能不断提高,并且有很多成熟的开源框架和工具可以使用,如 Deeplearning4j,使得开发人脸识别系统变得更加容易。

三、数据集格式

  1. 数据集来源:我们可以使用公开的人脸识别数据集,如 Labeled Faces in the Wild(LFW)数据集,也可以自己收集企业员工的面部图像构建数据集。
  2. 数据集格式:数据集通常以图像文件的形式存储,每个图像文件对应一个员工的面部图像。图像文件可以是 JPEG、PNG 等常见的图像格式。为了方便管理和使用数据集,我们可以将图像文件按照员工的编号或姓名进行命名,并将其存储在一个特定的目录中。例如,我们可以创建一个名为“dataset”的目录,然后在该目录下创建多个子目录,每个子目录对应一个员工,子目录中的图像文件即为该员工的面部图像。
  3. 数据集表格示例
员工编号员工姓名图像文件路径
001张三dataset/001/face1.jpg
001张三dataset/001/face2.jpg
002李四dataset/002/face1.jpg
002李四dataset/002/face2.jpg

四、技术介绍

  1. Spring BootSpring Boot 是一个基于 Spring 框架的快速开发框架,它简化了 Spring 应用的开发过程,使得开发者可以更加专注于业务逻辑的实现。在本案例中,我们使用 Spring Boot 来构建企业门禁系统的后端服务,实现人脸识别的业务逻辑。
  2. Deeplearning4jDeeplearning4j 是一个基于 Java 的深度学习框架,它支持多种神经网络模型,如 CNN、循环神经网络(Recurrent Neural NetworkRNN)等。在本案例中,我们使用 Deeplearning4j 来训练和部署人脸识别模型。
  3. 图像预处理:在进行人脸识别之前,我们需要对图像进行预处理,包括图像的缩放、裁剪、归一化等操作,以提高模型的识别准确性。
  4. 模型训练:使用 Deeplearning4j 提供的 API,我们可以构建和训练人脸识别模型。在训练过程中,我们需要将数据集分为训练集和测试集,使用训练集对模型进行训练,使用测试集对模型的性能进行评估。
  5. 模型部署:训练好的模型可以部署到企业门禁系统中,实现人脸识别的功能。在部署过程中,我们需要将模型转换为适合在生产环境中运行的格式,并使用 Spring Boot 提供的 RESTful API 将模型暴露给前端应用。

五、相关Maven 依赖

在使用 Spring Boot 整合 Deeplearning4j 实现企业门禁人脸识别系统时,我们需要添加以下 Maven 依赖:

<dependency><groupId>org.deeplearning4j</groupId><artifactId>deeplearning4j-core</artifactId><version>1.0.0-beta7</version>
</dependency>
<dependency><groupId>org.deeplearning4j</groupId><artifactId>deeplearning4j-nn</artifactId><version>1.0.0-beta7</version>
</dependency>
<dependency><groupId>org.deeplearning4j</groupId><artifactId>deeplearning4j-ui</artifactId><version>1.0.0-beta7</version>
</dependency>
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId>
</dependency>

六、代码示例

6.1 图像预处理

import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
import org.deeplearning4j.nn.transferlearning.FineTuneConfiguration;
import org.deeplearning4j.nn.transferlearning.TransferLearning;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.model.VGG16;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
import org.nd4j.linalg.factory.Nd4j;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;public class ImagePreprocessor {private static final Logger logger = LoggerFactory.getLogger(ImagePreprocessor.class);public static double[] preprocessImage(String imagePath) {try {BufferedImage image = ImageIO.read(new File(imagePath));int width = 224;int height = 224;BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);resizedImage.getGraphics().drawImage(image, 0, 0, width, height, null);double[] pixels = new double[width * height * 3];for (int y = 0; y < height; y++) {for (int x = 0; x < width; x++) {int argb = resizedImage.getRGB(x, y);int r = (argb >> 16) & 0xff;int g = (argb >> 8) & 0xff;int b = argb & 0xff;pixels[y * width * 3 + x * 3] = r / 255.0;pixels[y * width * 3 + x * 3 + 1] = g / 255.0;pixels[y * width * 3 + x * 3 + 2] = b / 255.0;}}DataNormalization scaler = new ImagePreProcessingScaler(0, 1);scaler.transform(Nd4j.create(pixels));return pixels;} catch (IOException e) {logger.error("Error preprocessing image: {}", e.getMessage());return null;}}
}

这段代码实现了对图像的预处理功能,包括图像的缩放、归一化等操作。首先,我们使用ImageIO读取图像文件,并将其缩放到指定的大小。然后,我们将图像的像素值转换为double类型,并进行归一化处理,使得像素值在 0 到 1 之间。

6.2 模型训练

import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
import org.deeplearning4j.nn.transferlearning.FineTuneConfiguration;
import org.deeplearning4j.nn.transferlearning.TransferLearning;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.model.VGG16;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
import org.nd4j.linalg.factory.Nd4j;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;import java.io.File;
import java.util.ArrayList;
import java.util.List;public class FaceRecognitionTrainer {private static final Logger logger = LoggerFactory.getLogger(FaceRecognitionTrainer.class);public static ComputationGraph trainModel(String datasetPath, int numClasses) {try {// 加载预训练的 VGG16 模型ZooModel zooModel = VGG16.builder().build();ComputationGraph vgg16 = (ComputationGraph) zooModel.initPretrained();// 设置微调配置FineTuneConfiguration fineTuneConf = new FineTuneConfiguration.Builder().updater("sgd").learningRate(0.001).seed(123).build();// 进行迁移学习ComputationGraph model = new TransferLearning.GraphBuilder(vgg16).fineTuneConfiguration(fineTuneConf).setFeatureExtractor("fc2").removeVertexKeepConnections("predictions").addLayer("predictions",org.deeplearning4j.nn.conf.layers.OutputLayer.builder().nIn(4096).nOut(numClasses).activation("softmax").build()).build();// 加载数据集List<double[]> images = new ArrayList<>();List<Integer> labels = new ArrayList<>();File datasetDir = new File(datasetPath);for (File employeeDir : datasetDir.listFiles()) {int label = Integer.parseInt(employeeDir.getName());for (File imageFile : employeeDir.listFiles()) {double[] pixels = ImagePreprocessor.preprocessImage(imageFile.getAbsolutePath());if (pixels!= null) {images.add(pixels);labels.add(label);}}}// 创建数据集迭代器DataSetIterator iterator = new FaceRecognitionDataSetIterator(images, labels);// 训练模型model.fit(iterator);return model;} catch (Exception e) {logger.error("Error training model: {}", e.getMessage());return null;}}
}

这段代码实现了对人脸识别模型的训练功能。首先,我们加载预训练的 VGG16 模型,并设置微调配置。然后,我们使用迁移学习的方法,将预训练的模型进行微调,以适应人脸识别的任务。接着,我们加载数据集,并创建数据集迭代器。最后,我们使用迭代器对模型进行训练。

6.3 模型部署

import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.model.VGG16;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.factory.Nd4j;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.multipart.MultipartFile;import java.io.File;
import java.io.IOException;@SpringBootApplication
@RestController
public class FaceRecognitionApplication {private static final Logger logger = LoggerFactory.getLogger(FaceRecognitionApplication.class);private ComputationGraph model;public static void main(String[] args) {SpringApplication.run(FaceRecognitionApplication.class, args);}@PostMapping("/recognize")public ResponseEntity<String> recognizeFace(@RequestParam("image") MultipartFile imageFile) {try {// 加载模型(如果尚未加载)if (model == null) {model = FaceRecognitionTrainer.trainModel("dataset", 10);}// 保存上传的图像文件File tempFile = File.createTempFile("temp", ".jpg");imageFile.transferTo(tempFile);// 预处理图像double[] pixels = ImagePreprocessor.preprocessImage(tempFile.getAbsolutePath());// 进行人脸识别int prediction = predictFace(pixels);// 返回识别结果return new ResponseEntity<>("Recognized face as employee " + prediction, HttpStatus.OK);} catch (IOException e) {logger.error("Error recognizing face: {}", e.getMessage());return new ResponseEntity<>("Error recognizing face", HttpStatus.INTERNAL_SERVER_ERROR);}}private int predictFace(double[] pixels) {double[] output = model.outputSingle(pixels);int prediction = Nd4j.argMax(output).getInt(0);return prediction;}
}

这段代码实现了将训练好的人脸识别模型部署为一个 RESTful API 的功能。我们使用 Spring Boot 构建了一个后端服务,并在服务中加载训练好的模型。当接收到前端应用上传的图像文件时,我们对图像进行预处理,并使用模型进行人脸识别。最后,我们将识别结果返回给前端应用。

七、单元测试

7.1 图像预处理测试

import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertNotNull;public class ImagePreprocessorTest {@Testpublic void testPreprocessImage() {double[] pixels = ImagePreprocessor.preprocessImage("test.jpg");assertNotNull(pixels);}
}

这段代码对图像预处理功能进行了单元测试。我们使用一个测试图像文件,并调用ImagePreprocessor.preprocessImage方法对图像进行预处理。然后,我们检查返回的像素数组是否不为空。

7.2 模型训练测试

import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertNotNull;public class FaceRecognitionTrainerTest {@Testpublic void testTrainModel() {ComputationGraph model = FaceRecognitionTrainer.trainModel("dataset", 10);assertNotNull(model);}
}

这段代码对模型训练功能进行了单元测试。我们使用一个测试数据集,并调用FaceRecognitionTrainer.trainModel方法对模型进行训练。然后,我们检查返回的模型是否不为空。

7.3 模型部署测试

import org.junit.jupiter.api.Test;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.mock.web.MockMultipartFile;
import java.io.FileInputStream;
import java.io.IOException;
import static org.junit.jupiter.api.Assertions.assertEquals;@SpringBootTest
public class FaceRecognitionApplicationTest {@Testpublic void testRecognizeFace() throws IOException {FaceRecognitionApplication application = new FaceRecognitionApplication();FileInputStream fis = new FileInputStream("test.jpg");MockMultipartFile imageFile = new MockMultipartFile("image", "test.jpg", "image/jpeg", fis);ResponseEntity<String> response = application.recognizeFace(imageFile);assertEquals(HttpStatus.OK, response.getStatusCode());}
}

这段代码对模型部署功能进行了单元测试。我们使用一个测试图像文件,并模拟前端应用上传图像文件的请求。然后,我们检查返回的响应状态码是否为 200(OK)

八、预期输出

  1. 图像预处理:经过图像预处理后,图像的像素值应该在 0 到 1 之间,并且图像的大小应该符合模型的输入要求。
  2. 模型训练:在模型训练过程中,我们可以观察到模型的损失函数和准确率的变化情况。随着训练的进行,损失函数应该逐渐减小,准确率应该逐渐提高。
  3. 模型部署:当我们上传一张员工的面部图像时,后端服务应该能够快速准确地识别出该员工的身份,并返回相应的识别结果。

九、参考资料文献

  1. Deeplearning4j 官方文档
  2. Spring Boot 官方文档
  3. 卷积神经网络介绍
  4. 人脸识别技术介绍

相关文章:

Springboot 整合 Java DL4J 实现企业门禁人脸识别系统

&#x1f9d1; 博主简介&#xff1a;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/literature?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编程&#xff0c;…...

SSTI模板注入+CTF实例

参考文章&#xff1a; 一文了解SSTI和所有常见payload 以flask模板为例-腾讯云开发者社区-腾讯云 (tencent.com) python-flask模块注入(SSTI) - ctrl_TT豆 - 博客园 (cnblogs.com) ssti详解与例题以及绕过payload大全_ssti绕过空格-CSDN博客 1. SSTI&#xff08;模板注入&…...

iPhone 16 Pro 拆解揭秘:设计改进与维修便利性

苹果最新推出的iPhone 16系列在许多方面都进行了更新和改进&#xff0c;而这次我们要聚焦的是其中的高端型号——iPhone 16 Pro。 这款手机不仅在性能上有所提升&#xff0c;在内部构造上也带来了不少变化&#xff0c;让我们一起来看看这些细节吧。 更容易进入的内部结构 对于…...

Java项目实战II养老||基于Java+Spring Boot+MySQL的社区智慧养老监护管理平台设计与实现(源码+数据库+文档)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 随着老龄化…...

利用FnOS搭建虚拟云桌面,并搭建前端开发环境(二)

利用FnOS搭建虚拟云桌面&#xff0c;并搭建前端开发环境 二 一、docker镜像二、环境配置三、核心环境配置流程文档 利用FnOS搭建虚拟云桌面&#xff0c;并搭建前端开发环境&#xff08;一&#xff09; 上一章安装了飞牛FnOS系统&#xff0c;界面如下&#xff0c;这一张配置前端…...

【Python】Qwen-VL-7B box

VLLM-Qwen2-VL-7B-Instruct import cv2# 读取图像 image_path haibaoA.png # 替换为图像的路径 image cv2.imread(image_path)# 定义框的坐标 (x1, y1) 是左上角&#xff0c;(x2, y2) 是右下角 x1, y1 200, 550 # 左上角坐标 x2, y2 799, 750 # 右下角坐标 h, w image.…...

echarts按需引入解决项目大小问题

背景&#xff1a; 按需加载缩减项目大小&#xff0c;提升项目性能和可用性 实现&#xff1a; 创建echarts.js main.js进行配置 页面中引用 效果 全量导入 按需加载&#xff1a;...

天气预报echarts

如上图&#xff0c;可以切换温度&#xff0c;降水量&#xff0c;风力风向和空气质量 <template><el-radio-group v-model"selectedData" change"updateChart"><el-radio-button label"temperature">温度</el-radio-butto…...

Kafka-初识

一、Kafka是什么&#xff1f; Kafka是一个高度可扩展、弹性、容错和安全的分布式流处理平台&#xff0c;由服务器和客户端组成&#xff0c;通过高性能TCP网络协议进行通信。它可以像消息队列一样生产和消费数据。可以部署在裸机硬件、虚拟机和容器上&#xff0c;也可以部署在本…...

Redis的主要的特性和优势 ?

Redis 的主要特性 内存存储&#xff1a;Redis 将数据存储在内存中&#xff0c;这使得读写操作非常快速。它还支持将数据持久化到磁盘&#xff0c;以防止数据丢失。 丰富的数据结构&#xff1a;Redis 不仅支持简单的字符串键值对&#xff0c;还支持更复杂的数据结构&#xff0c…...

yolov5-7.0模型DNN加载函数及参数详解(重要)

yolov5-7.0模型DNN加载函数及参数详解&#xff08;重要&#xff09; 引言yolov5&#xff08;v7.0&#xff09;1&#xff0c;yolov5.h(加载对应模型里面的相关参数要更改)2&#xff0c;main主程序&#xff08;1&#xff09;加载网络&#xff08;2&#xff09;检测推理&#xff0…...

StringEntity 用于将字符串内容作为 HTTP 请求实体(请求体)

StringEntity 类是 Apache HttpClient 库中的一个类&#xff0c;它用于将字符串内容作为 HTTP 请求实体&#xff08;请求体&#xff09;。这个类非常适合用于发送 JSON、XML 或其他需要以字符串形式发送的数据。以下是 StringEntity 类的一些常用方法和代码案例&#xff1a; …...

校园系统校园小程序 论坛校园圈系统失物招领、闲置二手、跑腿外卖等校园圈子系统应该具备有哪些功能

针对校园系统、校园小程序、论坛校园圈系统以及失物招领、闲置二手、跑腿外卖等具体功能&#xff0c;一个综合性的校园圈子系统应该具备以下主要功能&#xff1a; 前后端源码查看 一、基础功能 用户注册与登录 提供用户注册和登录功能&#xff0c;支持学生身份验证、手机号验…...

[AWS云]kafka调用和创建

背景:因为因为公司的项目需要使用AWS的kafka&#xff0c;但是在创建和使用过程中都遇到了一些报错和麻烦&#xff0c;毕竟老外的东西&#xff0c;和阿里云、华为使用起来还是不一样。 一、创建&#xff08;创建的配置过程就略了&#xff0c;就是配置一下可用区、型号&#xff0…...

查看 Excel 应用程序中已打开的 Excel 文件的完整路径

要查看 Excel 应用程序中已打开的 Excel 文件的完整路径&#xff08;全路径&#xff09;&#xff0c;你可以通过以下几种方法获取具体路径&#xff0c;尤其是在 VSTO 应用程序中。 方法1&#xff1a;使用 VSTO Excel 外接程序代码 在 VSTO 外接程序代码中&#xff0c;您可以直接…...

学习 RocketMQ 单机部署、消息发送、消息接收

文章目录 RocketMQ 介绍为什么要使用 MQ &#xff1f;RocketMQ 与其他产品对比vs Kafkavs RabbitMQvs ActiveMQ RocketMQ 重要概念部署 Namesrver、Broker、Dashboard快速入门消息生产者消息消费者 消费模式简单消息1&#xff09;同步发送2&#xff09;异步发送3&#xff09;单…...

【计算机网络】CDN

CDN&#xff08;Content Delivery Network&#xff0c;内容分发网络&#xff09;是一种分布式的服务器网络&#xff0c;旨在通过将内容缓存到多个地理位置的服务器上&#xff0c;加速内容的分发和传递。CDN 的主要目的是减少用户访问网站时的延迟&#xff0c;提升用户体验&…...

数据结构:插入排序

1.插入排序 此排序如打扑克牌一样&#xff1b;每次抓牌&#xff0c;把扑克从前向后扒拉&#xff1b;找到合适的位置插入进去—所以叫插入排序&#xff1b; 时间复杂度&#xff1a;O&#xff08;N^2&#xff09; int arr[10] { 9,8,7,6,5,4,3,2,1,0 };//数据太多就不好写了 …...

Nginx反向代理配置与负载均衡配置

简介&#xff1a;整理自黑马程序员苍穹外卖的第11节 nginx是什么&#xff1f; nginx的好处 nginx反向代理配置方式 nginx负载均衡的配置方式 nginx负责均衡策略...

axios 前端与 Django 后端的 POST 交互

背景 自己在写一些油猴脚本&#xff0c;前端需要用 JS&#xff0c;后端是自己的服务&#xff0c;是用 Python 的 Django 框架完成的。 油猴脚本中需要通过 POST 方法&#xff0c;向后端传一些数据&#xff0c;所以前端我用的是 axios 库&#xff0c;后端需要用 Django 处理 P…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...