[Halcon矩阵] 通过手眼标定矩阵计算相机旋转角度
- 📢博客主页:https://loewen.blog.csdn.net
- 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
- 📢本文由 丶布布原创,首发于 CSDN,转载注明出处🙉
- 📢现在的付出,都会是一种沉淀,只为让你成为更好的人✨
文章预览:
- 一. 理解手眼标定矩阵
- 二. 拆解手眼标定矩阵
一. 理解手眼标定矩阵
手眼标定矩阵通常是一个齐次变换矩阵,它包含了旋转、平移、缩放和可能的其他变换信息。这个矩阵可以将一个点从机械手坐标系变换到相机坐标系,或者相反。
二. 拆解手眼标定矩阵
1、提取旋转矩阵
-
旋转矩阵是一个正交矩阵,它的行和列都是单位向量且彼此正交。
-
在二维情况下,旋转矩阵(22)通常表示为:[cosθ,-sinθ,sinθ,cosθ](这里不是14矩阵,而是2*2矩阵)
-
可以通过计算手眼标定矩阵的左上角2x2子矩阵[a,b,c,d]的行列式来确定是否包含缩放或剪切变换。
1)如果行列式等于1,即|a,b,c,d| = ab - cd = 1,则矩阵只包含旋转;
2)如果不等于1,即|a,b,c,d| = ab - cd ≠ 1,则矩阵可能还包含缩放或剪切。 -
在没有缩放和剪切的情况下,可以通过对左上角2x2子矩阵进行正交化来提取旋转矩阵。
2、提取缩放矩阵
-
缩放矩阵是一个对角矩阵,它的对角线元素表示了各个方向上的缩放比例。
-
在二维情况下,缩放矩阵通常表示为:S=[Sx,0,0,Sy]
-
可以通过计算手眼标定矩阵的左上角2x2子矩阵的每个元素的绝对值来确定缩放比例。然而,这种方法可能受到旋转和剪切的影响,因此更准确的方法是通过SVD(奇异值分解)或QR分解来提取缩放比例。
3、提取剪切矩阵
- 剪切矩阵表示了坐标轴之间的倾斜程度。
- 在二维情况下,剪切矩阵通常不是对角矩阵,但可以通过计算手眼标定矩阵的左上角2x2子矩阵的非对角线元素来确定剪切程度。
- 然而,剪切变换通常不是手眼标定中的标准变换,因此可能需要额外的步骤来识别和提取剪切矩阵。这通常涉及到更复杂的数学处理,如矩阵的极分解或QR分解。
这也为我们从一个包含缩放和旋转效果的变换矩阵中提取出纯粹的旋转部分,然后计算旋转角度提供思路:可以按照以下步骤进行(假设只考虑旋转和缩放,没有剪切和平移):
三. 实战演练(提取旋转角度)
以该手眼标定矩阵的左上角2x2子矩阵为例:
M = [ M 11 M 12 M 21 M 22 ] = [ − 8.56361 e − 03 2.24152 e − 05 1.07640 e − 05 8.55496 e − 03 ] (1) M = \tag{1} \left [ \begin{matrix} M_{11} & M_{12}\\ M_{21} & M_{22}\\ \end{matrix}\right ] =\left [ \begin{matrix} -8.56361e-03 & 2.24152e-05\\ 1.07640e-05 & 8.55496e-03\\ \end{matrix}\right ] M=[M11M21M12M22]=[−8.56361e−031.07640e−052.24152e−058.55496e−03](1)
1、 很明显可以看出,由于|M11M22 - M12M21| ≠ 1,所以该矩阵还包含缩放或剪切。
2、消除缩放效果(矩阵归一化)*:
1)对于 2×2 矩阵,我们可以选择任一行的范数来作为缩放因子,将旋转矩阵归一化,即将第一列的向量单位化。
这样可以消除矩阵的缩放效果:
S 1 = ( M 11 ) 2 + ( M 21 ) 2 = ( − 8.56361 ∗ 1 0 − 3 ) 2 + ( 1.07640 ∗ 1 0 − 5 ) 2 ≈ 0.00856361 \text{S}_1 = \sqrt{(M_{11})^2 + (M_{21})^2} = \sqrt{(-8.56361 * 10^{-3})^2 + (1.07640* 10^{-5})^2} ≈ 0.00856361 S1=(M11)2+(M21)2=(−8.56361∗10−3)2+(1.07640∗10−5)2≈0.00856361
S 2 = ( M 12 ) 2 + ( M 22 ) 2 = ( 2.24152 ∗ 1 0 − 5 ) 2 + ( 8.55496 ∗ 1 0 − 3 ) 2 ≈ 0.00855496 \text{S}_2 = \sqrt{(M_{12})^2 + (M_{22})^2} = \sqrt{(2.24152 * 10^{-5})^2 + (8.55496* 10^{-3})^2} ≈ 0.00855496 S2=(M12)2+(M22)2=(2.24152∗10−5)2+(8.55496∗10−3)2≈0.00855496
取: S = S 1 + S 2 2 = 0.008559285 (2) S =\tag{2} \frac{S_1+S_2}{2} = 0.008559285 S=2S1+S2=0.008559285(2)
3、归一化矩阵:将矩阵除以缩放因子,消除缩放效果:
M ’ = M S = [ − 8.56361 ∗ 1 0 − 3 / 0.008559285 2.24152 ∗ 1 0 − 5 / 0.008559285 1.0764 ∗ 1 0 − 5 / 0.008559285 8.55496 ∗ 1 0 − 3 / 0.008559285 ] = [ − 1.0005 0.00262 0.00126 0.9995 ] (3) M’ =\frac{M}{S} = \tag{3} \left [\begin{matrix} -8.56361 * 10^{-3} /0.008559285 & 2.24152* 10^{-5} /0.008559285\\ 1.0764* 10^{-5} /0.008559285 & 8.55496 * 10^{-3} /0.008559285\\ \end{matrix}\right] =\left [\begin{matrix} -1.0005 & 0.00262\\ 0.00126 & 0.9995\\ \end{matrix}\right] M’=SM=[−8.56361∗10−3/0.0085592851.0764∗10−5/0.0085592852.24152∗10−5/0.0085592858.55496∗10−3/0.008559285]=[−1.00050.001260.002620.9995](3)
4、由于m12′(0.00262) 与m21′ (0.00126)并不相同,表明矩阵中不仅仅含有旋转矩阵,还包含了剪切矩阵,剪切变换会改变图形的形状,使其在某些方向上拉伸或压缩,但不像缩放那样均匀地影响所有方向。
M ’ = R ⋅ K = [ c o s ( θ ) − s i n ( θ ) s i n ( θ ) c o s ( θ ) ] × [ 1 k x k y 1 ] = [ − 1.0005 0.00262 0.00126 0.9995 ] (4) M’ =\tag{4}R⋅K = \left [ \begin{matrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\\ \end{matrix}\right ] × \left[ \begin{matrix} 1 & kx \\ ky & 1\\ \end{matrix}\right ] = \left [\begin{matrix} -1.0005 & 0.00262\\ 0.00126 & 0.9995\\ \end{matrix}\right] M’=R⋅K=[cos(θ)sin(θ)−sin(θ)cos(θ)]×[1kykx1]=[−1.00050.001260.002620.9995](4)
其中,kx表示水平剪切因子,决定了沿y
轴的移动量,ky表示垂直剪切因子,决定了沿x
轴的移动量。
5、计算旋转角度:
如果忽略剪切带来的影响
,可以根据归一化后的矩阵 M′的元素,我们可以计算旋转角度 :
θ = a r c t a n 2 ( m 21 ′ , m 11 ′ ) = a r c t a n 2 ( 0.00126 , − 1.0005 ) = 3.14033 = 179.928 ° (5) θ=\tag{5}arctan2(m_{21}^′,m_{11}^′) = arctan2(0.00126,-1.0005) = 3.14033 = 179.928° θ=arctan2(m21′,m11′)=arctan2(0.00126,−1.0005)=3.14033=179.928°(5)
由m11′为负可知, 机械手坐标系与相机坐标系X方向为相反的关系,所以实际角度偏差为180 - 179.928 = 0.072°
PS:arctan2 函数是计算两个数的商(y/x)的反正切值,但考虑了这两个数所在的象限,(y/x)= (0.00126/-1.0005)在第二象限。
拓展:
下雨天,最惬意的事莫过于躺在床上静静听雨,雨中入眠,连梦里也长出青苔。 |
相关文章:

[Halcon矩阵] 通过手眼标定矩阵计算相机旋转角度
📢博客主页:https://loewen.blog.csdn.net📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢本文由 丶布布原创,首发于 CSDN,转载注明出处🙉📢现…...

推荐几本编程入门书目
对于编程入门,推荐以下几本书籍,这些书籍覆盖了不同的编程语言,适合零基础的学习者逐步掌握编程基础: 1. 《Python编程快速上手——让繁琐工作自动化》 特点:以简单易懂的方式介绍了Python的基础知识和编程概念&#…...

每天一个数据分析题(五百零五)- 提升方法
提升方法(Boosting),是一种可以用来减小监督式学习中偏差的机器学习算法。基于Boosting的集成学习,其代表算法不包括? A. Adaboost B. GBDT C. XGBOOST D. 随机森林 数据分析认证考试介绍:点击进入 题…...

华为云ECS部署DR模式的LVS
1 概述 LVS是linux内核模块,用于4层的负载均衡,它有多个工作模式,例如NAT模式、DR模式。 DR模式的数据流是这样的: client ---> Director Server(即LVS服务器,带VIP) ---> Real Serve…...

如何在 Jupyter Notebook 执行和学习 SQL 语句(上)
在Jupyter Notebook中使用SQL,你可以通过以下步骤创建一个数据库并连接到该数据库: 1. 安装SQLite和SQLAlchemy SQLite 是一个轻量级的数据库系统,适合本地小型项目。SQLAlchemy 是一个强大的数据库连接工具,可以在Jupyter中方便…...

数据结构-5.7.二叉树的层次遍历
一.演示: 1.初始化队列: 2.根结点入队: 3.判断队列是否为空,此时有根结点,说明不为空,则队头结点即根结点出队并访问,再先进它的左结点,最后进它的右结点: 4.之后对进来…...

RISC-V知识点目录
分支预测 分支预测概述https://blog.csdn.net/zhangshangjie1/article/details/136947089?sharetypeblogdetail&sharerId136947089&sharereferPC&sharesourcezhangshangjie1&spm1011.2480.3001.8118分支指令的方向预测https://blog.csdn.net/zhangshangjie1/a…...

C++11 新特性 学习笔记
C11 新特性 | 侯捷C11学习笔记 笔者作为侯捷C11新特性课程的笔记进行记录,供自己查阅方便 文章目录 C11 新特性 | 侯捷C11学习笔记1.Variadic TemplatesC11支持函数模板的默认模板参数C11在函数模板和类模板中使用可变参数 可变参数模板1) 可变参数函数模板2) 可变…...

Go 语言中的格式化占位符
在 Go 语言中,fmt 包提供了大量的格式化占位符,用于格式化输出不同类型的数据。选择合适的占位符,可以确保输出的内容格式正确、清晰易懂。 常见的占位符: 基本类型 %v:按值的默认格式输出。适用于任何类型。%v&…...

QD1-P5 HTML 段落标签(p)换行标签(br)
本节视频 www.bilibili.com/video/BV1n64y1U7oj?p5 本节学习 HTML 标签: p标签 段落br标签 换行 一、p 标签-段落 1.1 使用 p 标签划分段落 <p>段落文本</p>示例 <!DOCTYPE html> <html><head><meta charset"…...

Django的模板语法
Django的模板语法 1、初步认识2、原理 1、初步认识 本质上:在HTML中写一些占位符,由数据对这些占位符进行替换和处理。 在views.py中用字典(键值对)的形式传参,在html文件中用两个花括号来显示单独的值 列表、元组等数…...

【在Linux世界中追寻伟大的One Piece】信号捕捉|阻塞信号
目录 1 -> 信号捕捉初识 2 -> 阻塞信号 2.1 -> 信号其他相关常见概念 2.2 -> 在内核中的表示 2.3 -> sigset_t 2.4 -> 信号集操作函数 2.5 -> sigprocmask 2.6 -> sigpending 3 -> 捕捉信号 3.1 -> 内核如何实现信号的捕捉 3.2 ->…...

信息系统运维管理方案,运维建设文档,运维平台建设方案,软件硬件中间件运维方案,信息安全管理(原件word,PPT,excel)
建设方案目录: 1、智慧运维系统建设背景 2、智慧运维系统建设目标 3、智慧运维系统建设内容 4、智慧运维系统建设技术 5、智慧运维系统建设流程 6、智慧运维系统建设收益 企业对运维管理的需求: 1、提高运维效率:降低运维成本,提高…...

多元统计实验报告内容
1 实验内容 实验目的: 利用R软件进行一些简单的数学运算,通过对简单统计量函数的操作了解R语言的基本操作过程,从而对R语言形成初步的认识。 实验项目名称: R语言软件的安装。R语言中赋值语句的练习。 在R中<-表示赋值,c()表示数组,X1<-c()即表示将一组数据赋…...

使用机器学习边缘设备的快速目标检测
论文标题:Fast Object Detection with a Machine Learning Edge Device 中文标题:使用机器学习边缘设备的快速目标检测 作者信息: Richard C. Rodriguez, MSDA Information Systems and Cyber Security Department, The University of Tex…...

Anthropic的CEO达里奥·阿莫迪(Dario Amodei)文章传达他对AI未来的乐观展望
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

Human-M3 多模态姿态估计数据集-初步解读
文章概述(个人总结):该论文重点提出一个用于人体姿态估计的RGB+点云数据集,针对该多模态数据集,作者阐述了数据集的收集、数据标注以及该数据集的特点。并提出了一个简单的多模态3D人体姿态估计算法,对比其他模型,该方法性能较好。最后总结了该数据集和该方法的限制。 …...

python爬虫 - 进阶正则表达式
🌈个人主页:https://blog.csdn.net/2401_86688088?typeblog 🔥 系列专栏:https://blog.csdn.net/2401_86688088/category_12797772.html 目录 前言 一、匹配中文 (一)匹配单个中文字符 (二…...

静态路由和nqa 联动实验
nqa 配置 1 test 断端口 很明显是切换到备机上了...

golang用any类型去接收前端传的数字类型的值,类型断言为float64
在 Go 中,使用 any 类型接收前端传来的数字时,通常会发现其被类型断言为 float64。这是因为在 JSON 解码的过程中,Go 的 encoding/json 包会将数字解析为 float64。但如果你在结构体中指明字段为 int 类型,框架会根据字段类型进行…...

5、Spring Boot 3.x 集成 RabbitMQ
一、前言 本篇主要是围绕着 Spring Boot 3.x 与 RabbitMQ 的集成,这边文章比较简单,RabbitMQ 的集成没有太大的变化,这篇文章主要是为了后续的 RabbitMQ 的动态配置做铺垫。 1、Docker 安装 RabbitMQ 2、Spring Boot 3.x 集成 RabbitMQ二、D…...

ENSP搭建基础网络拓扑图
一、ENSP的基本操作 1、配置网关 进入系统视图与退出 <Huawei>system-view [Huawei]quit 进入G0/0/0接口后配置ip [R1]interface GigabitEthernet 0/0/0 [R1-GigabitEthernet0/0/0]ip address 192.168.1.1 24查询所有接口的ip配置 [R1]display ip interface brief…...

尚硅谷rabbitmq 2024 消息可靠性答疑二 第22节
returnedMessage()只有失败才调用,confirm()成功失败了都会调用,为什么? 在RabbitMQ中,消息的确认和返回机制是为了确保消息的可靠传递和处理。confirm和returnedMessage方法的调用时机和目的不同,因此它们的行为也有…...

在 Ubuntu 上安装 Whisper 支撑环境(ffmpeg、PyTorch)的教程(2024亲测可用)
在 Ubuntu 上安装 Whisper 的教程 以下是如何在 Ubuntu 系统上安装 Whisper 以进行视频转录的详细步骤。 步骤 1:更新系统 首先更新你的 Ubuntu 系统,确保安装最新的软件包: sudo apt update && sudo apt upgrade -y步骤 2&#…...

vue+echarts实现雷达图及刻度标注
文章目录 前言代码实现实现效果总结 前言 最近项目有做数据可视化 大屏 不免再次使用些echarts应用 记录下其中echarts雷达图的实现 代码实现 先上代码 <template><div class"container"><div ref"chart" style"width: 500px; heig…...

【进阶OpenCV】 (9)--摄像头操作--->答题卡识别改分项目
文章目录 项目:答题卡识别改分1. 图片预处理2. 描绘轮廓3. 轮廓近似4. 透视变换5. 阈值处理6. 找每一个圆圈轮廓7. 将每一个圆圈轮廓排序8. 找寻所填答案,比对正确答案8.1 思路8.2 图解8.3 代码体现 9. 计算正确率 总结 项目:答题卡识别改分 …...

实时从TDengine数据库采集数据到Kafka Topic
实时从TDengine数据库采集数据到Kafka Topic 一、认识TDengine二、TDengine Kafka Connector三、什么是 Kafka Connect?四、前置条件五、安装 TDengine Connector 插件六、启动 Kafka七、验证 kafka Connect 是否启动成功八、TDengine Source Connector 的使用九、添…...

Linux -- 初识动静态库
目录 为什么要有库? 静态库 什么是静态库? 特点 优点 缺点 动态库 什么是动态库? 优点 缺点 编译器会选择哪个库? 为什么要有库? 库的存在是为了提高软件开发的效率、促进代码复用以及简化维护工作。通过使用…...

vite 打包前请求接口和打包后的不一致
在使用 Vite 进行项目打包时,如果发现打包前请求接口和打包后的行为不一致,这可能是由于多种原因导致的。以下是一些可能的原因和相应的解决方案: 1. 代理配置问题 开发环境:在开发环境中,Vite 通常使用 vite.config…...

fairseq 安装包python
背景: Collecting fairseq Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d7/0f/b7043b451a97eb9b4cfb1b1e23e567b947d9d7bca542403228bd53b435fe/fairseq-0.12.1.tar.gz (9.6 MB) Installing build dependencies ... done Getting requirements…...