当前位置: 首页 > news >正文

[Halcon矩阵] 通过手眼标定矩阵计算相机旋转角度

  • 📢博客主页:https://loewen.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 丶布布原创,首发于 CSDN,转载注明出处🙉
  • 📢现在的付出,都会是一种沉淀,只为让你成为更好的人✨

文章预览:

      • 一. 理解手眼标定矩阵
      • 二. 拆解手眼标定矩阵


一. 理解手眼标定矩阵

手眼标定矩阵通常是一个齐次变换矩阵,它包含了旋转、平移、缩放和可能的其他变换信息。这个矩阵可以将一个点从机械手坐标系变换到相机坐标系,或者相反。


二. 拆解手眼标定矩阵

1、提取旋转矩阵

  • 旋转矩阵是一个正交矩阵,它的行和列都是单位向量且彼此正交。

  • 在二维情况下,旋转矩阵(22)通常表示为:[cosθ,-sinθ,sinθ,cosθ](这里不是14矩阵,而是2*2矩阵)

  • 可以通过计算手眼标定矩阵的左上角2x2子矩阵[a,b,c,d]的行列式来确定是否包含缩放或剪切变换。
    1)如果行列式等于1,即|a,b,c,d| = ab - cd = 1,则矩阵只包含旋转;
    2)如果不等于1,即|a,b,c,d| = ab - cd ≠ 1,则矩阵可能还包含缩放或剪切。

  • 在没有缩放和剪切的情况下,可以通过对左上角2x2子矩阵进行正交化来提取旋转矩阵。

2、提取缩放矩阵

  • 缩放矩阵是一个对角矩阵,它的对角线元素表示了各个方向上的缩放比例。

  • 在二维情况下,缩放矩阵通常表示为:S=[Sx,0,0,Sy]

  • 可以通过计算手眼标定矩阵的左上角2x2子矩阵的每个元素的绝对值来确定缩放比例。然而,这种方法可能受到旋转和剪切的影响,因此更准确的方法是通过SVD(奇异值分解)或QR分解来提取缩放比例。

3、提取剪切矩阵

  • 剪切矩阵表示了坐标轴之间的倾斜程度。
  • 在二维情况下,剪切矩阵通常不是对角矩阵,但可以通过计算手眼标定矩阵的左上角2x2子矩阵的非对角线元素来确定剪切程度。
  • 然而,剪切变换通常不是手眼标定中的标准变换,因此可能需要额外的步骤来识别和提取剪切矩阵。这通常涉及到更复杂的数学处理,如矩阵的极分解或QR分解。

这也为我们从一个包含缩放和旋转效果的变换矩阵中提取出纯粹的旋转部分,然后计算旋转角度提供思路:可以按照以下步骤进行(假设只考虑旋转和缩放,没有剪切和平移):

三. 实战演练(提取旋转角度)

以该手眼标定矩阵的左上角2x2子矩阵为例:

M = [ M 11 M 12 M 21 M 22 ] = [ − 8.56361 e − 03 2.24152 e − 05 1.07640 e − 05 8.55496 e − 03 ] (1) M = \tag{1} \left [ \begin{matrix} M_{11} & M_{12}\\ M_{21} & M_{22}\\ \end{matrix}\right ] =\left [ \begin{matrix} -8.56361e-03 & 2.24152e-05\\ 1.07640e-05 & 8.55496e-03\\ \end{matrix}\right ] M=[M11M21M12M22]=[8.56361e031.07640e052.24152e058.55496e03](1)

1、 很明显可以看出,由于|M11M22 - M12M21| ≠ 1,所以该矩阵还包含缩放或剪切。

2、消除缩放效果(矩阵归一化)*:

1)对于 2×2 矩阵,我们可以选择任一行的范数来作为缩放因子,将旋转矩阵归一化,即将第一列的向量单位化。

这样可以消除矩阵的缩放效果:

S 1 = ( M 11 ) 2 + ( M 21 ) 2 = ( − 8.56361 ∗ 1 0 − 3 ) 2 + ( 1.07640 ∗ 1 0 − 5 ) 2 ≈ 0.00856361 \text{S}_1 = \sqrt{(M_{11})^2 + (M_{21})^2} = \sqrt{(-8.56361 * 10^{-3})^2 + (1.07640* 10^{-5})^2} ≈ 0.00856361 S1=(M11)2+(M21)2 =(8.56361103)2+(1.07640105)2 0.00856361

S 2 = ( M 12 ) 2 + ( M 22 ) 2 = ( 2.24152 ∗ 1 0 − 5 ) 2 + ( 8.55496 ∗ 1 0 − 3 ) 2 ≈ 0.00855496 \text{S}_2 = \sqrt{(M_{12})^2 + (M_{22})^2} = \sqrt{(2.24152 * 10^{-5})^2 + (8.55496* 10^{-3})^2} ≈ 0.00855496 S2=(M12)2+(M22)2 =(2.24152105)2+(8.55496103)2 0.00855496

取: S = S 1 + S 2 2 = 0.008559285 (2) S =\tag{2} \frac{S_1+S_2}{2} = 0.008559285 S=2S1+S2=0.008559285(2)

3、归一化矩阵:将矩阵除以缩放因子,消除缩放效果:
M ’ = M S = [ − 8.56361 ∗ 1 0 − 3 / 0.008559285 2.24152 ∗ 1 0 − 5 / 0.008559285 1.0764 ∗ 1 0 − 5 / 0.008559285 8.55496 ∗ 1 0 − 3 / 0.008559285 ] = [ − 1.0005 0.00262 0.00126 0.9995 ] (3) M’ =\frac{M}{S} = \tag{3} \left [\begin{matrix} -8.56361 * 10^{-3} /0.008559285 & 2.24152* 10^{-5} /0.008559285\\ 1.0764* 10^{-5} /0.008559285 & 8.55496 * 10^{-3} /0.008559285\\ \end{matrix}\right] =\left [\begin{matrix} -1.0005 & 0.00262\\ 0.00126 & 0.9995\\ \end{matrix}\right] M=SM=[8.56361103/0.0085592851.0764105/0.0085592852.24152105/0.0085592858.55496103/0.008559285]=[1.00050.001260.002620.9995](3)

4、由于m12(0.00262) 与m21 (0.00126)并不相同,表明矩阵中不仅仅含有旋转矩阵,还包含了剪切矩阵,剪切变换会改变图形的形状,使其在某些方向上拉伸或压缩,但不像缩放那样均匀地影响所有方向。

M ’ = R ⋅ K = [ c o s ( θ ) − s i n ( θ ) s i n ( θ ) c o s ( θ ) ] × [ 1 k x k y 1 ] = [ − 1.0005 0.00262 0.00126 0.9995 ] (4) M’ =\tag{4}R⋅K = \left [ \begin{matrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\\ \end{matrix}\right ] × \left[ \begin{matrix} 1 & kx \\ ky & 1\\ \end{matrix}\right ] = \left [\begin{matrix} -1.0005 & 0.00262\\ 0.00126 & 0.9995\\ \end{matrix}\right] M=RK=[cos(θ)sin(θ)sin(θ)cos(θ)]×[1kykx1]=[1.00050.001260.002620.9995](4)

其中,kx表示水平剪切因子,决定了沿y轴的移动量,ky表示垂直剪切因子,决定了沿x轴的移动量。

5、计算旋转角度

如果忽略剪切带来的影响,可以根据归一化后的矩阵 M′的元素,我们可以计算旋转角度 :

θ = a r c t a n 2 ( m 21 ′ , m 11 ′ ) = a r c t a n 2 ( 0.00126 , − 1.0005 ) = 3.14033 = 179.928 ° (5) θ=\tag{5}arctan2(m_{21}^′,m_{11}^′) = arctan2(0.00126,-1.0005) = 3.14033 = 179.928° θ=arctan2(m21m11)=arctan2(0.001261.0005)=3.14033=179.928°(5)

由m11为负可知, 机械手坐标系与相机坐标系X方向为相反的关系,所以实际角度偏差为180 - 179.928 = 0.072°

PS:arctan2 函数是计算两个数的商(y/x)的反正切值,但考虑了这两个数所在的象限,(y/x)= (0.00126/-1.0005)在第二象限。

拓展:

在这里插入图片描述


下雨天,最惬意的事莫过于躺在床上静静听雨,雨中入眠,连梦里也长出青苔。

相关文章:

[Halcon矩阵] 通过手眼标定矩阵计算相机旋转角度

📢博客主页:https://loewen.blog.csdn.net📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢本文由 丶布布原创,首发于 CSDN,转载注明出处🙉📢现…...

推荐几本编程入门书目

对于编程入门,推荐以下几本书籍,这些书籍覆盖了不同的编程语言,适合零基础的学习者逐步掌握编程基础: 1. 《Python编程快速上手——让繁琐工作自动化》 特点:以简单易懂的方式介绍了Python的基础知识和编程概念&#…...

每天一个数据分析题(五百零五)- 提升方法

提升方法(Boosting),是一种可以用来减小监督式学习中偏差的机器学习算法。基于Boosting的集成学习,其代表算法不包括? A. Adaboost B. GBDT C. XGBOOST D. 随机森林 数据分析认证考试介绍:点击进入 题…...

华为云ECS部署DR模式的LVS

1 概述 LVS是linux内核模块,用于4层的负载均衡,它有多个工作模式,例如NAT模式、DR模式。 DR模式的数据流是这样的: client ---> Director Server(即LVS服务器,带VIP) ---> Real Serve…...

如何在 Jupyter Notebook 执行和学习 SQL 语句(上)

在Jupyter Notebook中使用SQL,你可以通过以下步骤创建一个数据库并连接到该数据库: 1. 安装SQLite和SQLAlchemy SQLite 是一个轻量级的数据库系统,适合本地小型项目。SQLAlchemy 是一个强大的数据库连接工具,可以在Jupyter中方便…...

数据结构-5.7.二叉树的层次遍历

一.演示: 1.初始化队列: 2.根结点入队: 3.判断队列是否为空,此时有根结点,说明不为空,则队头结点即根结点出队并访问,再先进它的左结点,最后进它的右结点: 4.之后对进来…...

RISC-V知识点目录

分支预测 分支预测概述https://blog.csdn.net/zhangshangjie1/article/details/136947089?sharetypeblogdetail&sharerId136947089&sharereferPC&sharesourcezhangshangjie1&spm1011.2480.3001.8118分支指令的方向预测https://blog.csdn.net/zhangshangjie1/a…...

C++11 新特性 学习笔记

C11 新特性 | 侯捷C11学习笔记 笔者作为侯捷C11新特性课程的笔记进行记录,供自己查阅方便 文章目录 C11 新特性 | 侯捷C11学习笔记1.Variadic TemplatesC11支持函数模板的默认模板参数C11在函数模板和类模板中使用可变参数 可变参数模板1) 可变参数函数模板2) 可变…...

Go 语言中的格式化占位符

在 Go 语言中,fmt 包提供了大量的格式化占位符,用于格式化输出不同类型的数据。选择合适的占位符,可以确保输出的内容格式正确、清晰易懂。 常见的占位符: 基本类型 %v:按值的默认格式输出。适用于任何类型。%v&…...

QD1-P5 HTML 段落标签(p)换行标签(br)

本节视频 www.bilibili.com/video/BV1n64y1U7oj?p5 ‍ 本节学习 HTML 标签&#xff1a; p标签 段落br标签 换行 ‍ 一、p 标签-段落 1.1 使用 p 标签划分段落 <p>段落文本</p>示例 <!DOCTYPE html> <html><head><meta charset"…...

Django的模板语法

Django的模板语法 1、初步认识2、原理 1、初步认识 本质上&#xff1a;在HTML中写一些占位符&#xff0c;由数据对这些占位符进行替换和处理。 在views.py中用字典&#xff08;键值对&#xff09;的形式传参&#xff0c;在html文件中用两个花括号来显示单独的值 列表、元组等数…...

【在Linux世界中追寻伟大的One Piece】信号捕捉|阻塞信号

目录 1 -> 信号捕捉初识 2 -> 阻塞信号 2.1 -> 信号其他相关常见概念 2.2 -> 在内核中的表示 2.3 -> sigset_t 2.4 -> 信号集操作函数 2.5 -> sigprocmask 2.6 -> sigpending 3 -> 捕捉信号 3.1 -> 内核如何实现信号的捕捉 3.2 ->…...

信息系统运维管理方案,运维建设文档,运维平台建设方案,软件硬件中间件运维方案,信息安全管理(原件word,PPT,excel)

建设方案目录&#xff1a; 1、智慧运维系统建设背景 2、智慧运维系统建设目标 3、智慧运维系统建设内容 4、智慧运维系统建设技术 5、智慧运维系统建设流程 6、智慧运维系统建设收益 企业对运维管理的需求&#xff1a; 1、提高运维效率&#xff1a;降低运维成本&#xff0c;提高…...

多元统计实验报告内容

1 实验内容 实验目的: 利用R软件进行一些简单的数学运算,通过对简单统计量函数的操作了解R语言的基本操作过程,从而对R语言形成初步的认识。 实验项目名称: R语言软件的安装。R语言中赋值语句的练习。 在R中<-表示赋值,c()表示数组,X1<-c()即表示将一组数据赋…...

使用机器学习边缘设备的快速目标检测

论文标题&#xff1a;Fast Object Detection with a Machine Learning Edge Device 中文标题&#xff1a;使用机器学习边缘设备的快速目标检测 作者信息&#xff1a; Richard C. Rodriguez, MSDA Information Systems and Cyber Security Department, The University of Tex…...

Anthropic的CEO达里奥·阿莫迪(Dario Amodei)文章传达他对AI未来的乐观展望

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

Human-M3 多模态姿态估计数据集-初步解读

文章概述(个人总结):该论文重点提出一个用于人体姿态估计的RGB+点云数据集,针对该多模态数据集,作者阐述了数据集的收集、数据标注以及该数据集的特点。并提出了一个简单的多模态3D人体姿态估计算法,对比其他模型,该方法性能较好。最后总结了该数据集和该方法的限制。 …...

python爬虫 - 进阶正则表达式

&#x1f308;个人主页&#xff1a;https://blog.csdn.net/2401_86688088?typeblog &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html 目录 前言 一、匹配中文 &#xff08;一&#xff09;匹配单个中文字符 &#xff08;二…...

静态路由和nqa 联动实验

nqa 配置 1 test 断端口 很明显是切换到备机上了...

golang用any类型去接收前端传的数字类型的值,类型断言为float64

在 Go 中&#xff0c;使用 any 类型接收前端传来的数字时&#xff0c;通常会发现其被类型断言为 float64。这是因为在 JSON 解码的过程中&#xff0c;Go 的 encoding/json 包会将数字解析为 float64。但如果你在结构体中指明字段为 int 类型&#xff0c;框架会根据字段类型进行…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中&#xff0c;工业自动化网关起着至关重要的作用&#xff0c;尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关&#xff0c;为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多&#xff0c;其中不少设备采用Devicenet协议。Devicen…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...