当前位置: 首页 > news >正文

【动态规划】子数组系列(上)

在这里插入图片描述

1. 最大子数组和

53. 最大子数组和

状态表示:以 i 位置为结尾时的所有子数组中的最大和

状态转移方程:

i 位置为结尾的子数组又可以分为长度为 1 的和大于 1 的,长度为 1 就是 nums[i] ,长度不为 1 就是 dp[i - 1] + nums[i],最后取这两个的最大值即可

初始化:可以多开一个元素,为了不影响后续的值默认为 0 即可,也可以单独对 dp[0] 进行初始化,就不用多开一个元素了

填表顺序:从左到右

返回值:整个 dp 表中的最大值,因为结果可能是以任意位置结尾的,如果多开一个元素的话最后取最大值就不能再带上这个值了

class Solution {public int maxSubArray(int[] nums) {int n = nums.length;int[] dp = new int[n + 1];//dp[0] = Math.max(0,nums[0]);int res = -0x3f3f3f;for(int i = 1;i <= n;i++){dp[i] = Math.max(nums[i - 1],dp[i - 1] + nums[i - 1]); res = Math.max(res,dp[i]);}return res;}
}

2. 环形子数组的最大和

918. 环形子数组的最大和

这道题和上道题不同的就是是一个环形结构,首尾可以相连,这就会有下面两种情况

情况一和上一题是一样的,就是正常的求最大的子序列和,情况二就是首尾相连的情况,可以转化为求中间部分最小的子序列和,再用总的数组和减去这部分最小的子序列和就是最大子序列和,这两种情况求最大值就可以了

状态表示和状态转移方程都和上一题是类似的

初始化:求最大子序列和时还是 dp[0] 初始化为 0,不过求最小子序列就不一样了

dp[i] = Math.min(nums[i - 1],dp[i - 1] + nums[i - 1]);

求 dp[1] 时需要让最后的结果等于 num[0],所以 dp[i - 1] 就需要设为 0 或者一个很大的数,不过不能设为 int 的最大值,不然可能会溢出

返回值:返回两种情况的最大值,不过有一种情况需要注意,当数组中全是负数的话,第一种情况求的就是负数,第二种情况求的最小值就是整个数组和,再用数组和减去这个最小值就是 0 ,代表什么都不选,肯定是比第一种情况大的,这个时候还是需要返回第一种情况的值

class Solution {public int maxSubarraySumCircular(int[] nums) {int n = nums.length;int[] dp = new int[n + 1];int ret1 = Integer.MIN_VALUE;int sum = 0;for(int i = 1;i <= n;i++){dp[i] = Math.max(nums[i - 1],dp[i - 1] + nums[i - 1]);ret1 = Math.max(ret1,dp[i]);sum += nums[i - 1];}int ret2 = Integer.MAX_VALUE;dp[0] = 0x3f3f3f;for(int i = 1;i <= n;i++){dp[i] = Math.min(nums[i - 1],dp[i - 1] + nums[i - 1]);ret2 = Math.min(ret2,dp[i]);}if(sum == ret2) return ret1;return Math.max(ret1,sum - ret2);}
}

3. 乘积最大子数组

152. 乘积最大子数组

这道题求的是乘积最大的子数组,由于是乘法,就意味着两个负数乘完之后也会变成整数

状态表示:先定义为以 i 位置为结尾时的所有子数组中的最大乘积发现,如果是负数的话也可以乘进来,所以可以定义两个状态

以 i 位置为结尾时的所有子数组中的最大乘积

以 i 位置为结尾时的所有子数组中的最小乘积

状态转移方程:

求 f[i] 时,如果说当前元素是一个负数,那么就需要乘上一个最小的负数,也就是 g[i - 1],如果是正数的话正常求前一个状态的最大值再乘当前元素就行,最终确定最大值时需要再加上当前元素,这三个数一起求一个最大值即可

同理,求最小值 g[i] 时,如果说当前元素是一个正数,那么就需要乘上一个最小的负数,也就是 g[i - 1],如果是负数的话就需要找一个最大的正数来乘,最终确定最小值时需要再加上当前元素,这三个数一起求一个最小值即可

初始化:把 f[0] 和 g[0] 设置为 1 就不影响后续的乘积赋值

填表顺序:从左到右

返回值:f 表中的最大值

class Solution {public int maxProduct(int[] nums) {int n = nums.length;int[] f = new int[n + 1];int[] g = new int[n + 1];f[0] = 1;g[0] = 1;int ret = Integer.MIN_VALUE;for(int i = 1;i <= n;i++ ){f[i] = Math.max(Math.max(nums[i - 1], f[i - 1] * nums[i - 1]), g[i - 1] * nums[i - 1]);g[i] = Math.min(Math.min(nums[i - 1], f[i - 1] * nums[i - 1]), g[i - 1] * nums[i - 1]);ret = Math.max(ret,f[i]);}return ret;}
}

4. 乘积为正数的最长子数组长度

1567. 乘积为正数的最长子数组长度

状态表示:

f[i]:以 i 位置为结尾的所有子数组中乘积为正数的最长长度

g[i]:以 i 位置为结尾的所有子数组中乘积为负数的最长长度

状态转移方程:

还是和之前一样,可以分为长度为 1 的和长度大于 1 的,当长度为 1 时又可以分为 nums[i] 是正数还是负数两种情况,当是正数时长度就是 1,负数时就是 0,再看长度大于 1 的,也可以分为 nums[i] 是正数还是负数两种情况,当 num[i] 是正数时,就是从以 i - 1 为结尾时数组中的乘积为正数的最长长度加 1 即可,也就是 f[i - 1] + 1,当 num[i] 是负数时,就需要在 i - 1 为结尾时数组中的乘积为负数的长度加上 1,所以需要再定义一个 g[i] 状态数组来表示,也就是 g[i - 1] + 1,但是如果之前找不到一个以 i - 1 为结尾的数组,那么 g[i - 1] 就是 0,此时就不能继续加 1,因为 num[i] 是负数,这个长度不能加

为了简便,长度为 1 时的状态可以和下面长度大于 1 的合并一下,不影响结果

接下来看 g[i] 的状态转移方程:同理,也可以分为长度为 1 和长度大于 1 两种情况,接着二者又可以分为 num[i] 大于 0 和小于 0 两种情况,当 num[i] 大于 0 时,需要找到 i - 1 为结尾的乘积为负数的最长长度,也就是 g[i - 1],然后加 1,这里还是一样的,如果没有找到,那么 g[i - 1] 就是 0,num[i] 为正数,要求的是负数,所以这个 1 需要判断一下才能加,num[i] 小于 0 时,就需要找一个 i - 1 为结尾的乘积为正数的最长长度,也就是 f[i - 1] 再加 1,这时就不需要判断,找不到也没关系,可以直接 + 1

长度为 1 时也可以合并一下,不影响结果

nums[i] 等于 0 的情况直接不考虑就行

初始化:如果 nums[0] 是大于 0 的话,g[1] 应该是 0,也就是 g[0] = 0即可, 如果是小于 0 的话 g[1] 应该是 1,也就是 f[0] 应该是 0

填表顺序:从左到右,两个表一起填

返回值:f 表中的最大值

class Solution {public int getMaxLen(int[] nums) {int n = nums.length;int[] f = new int[n + 1];int[] g = new int[n + 1];int ret = 0;for(int i = 1;i <= n;i++){if(nums[i - 1] > 0){f[i] = f[i - 1] + 1;g[i] = g[i - 1] == 0 ? 0 : g[i - 1] + 1;}else if(nums[i - 1] < 0){f[i] = g[i - 1] == 0 ? 0 : g[i - 1] + 1;g[i] = f[i - 1] + 1;}ret = Math.max(f[i],ret);}return ret;}
}

在这里插入图片描述

相关文章:

【动态规划】子数组系列(上)

1. 最大子数组和 53. 最大子数组和 状态表示&#xff1a;以 i 位置为结尾时的所有子数组中的最大和 状态转移方程&#xff1a; i 位置为结尾的子数组又可以分为长度为 1 的和大于 1 的&#xff0c;长度为 1 就是 nums[i] &#xff0c;长度不为 1 就是 dp[i - 1] nums[i]&…...

字节青训营入门算法题:飞行棋分组

链接&#xff1a;飞行棋分组&#x1f517;&#x1f517; 题目 现在有一堆飞行棋棋子&#xff0c;每个棋子上标有数字序号。需要将这些棋子分成若干组&#xff0c;每组包含5个棋子&#xff0c;且组内所有棋子的数字序号必须相同。需要判断是否可以完成这样的分组。 解答 为了…...

# 执行 rpm -qa | grep qq 查询软件安装情况时报错 数据库损坏 db3 error(-30974)

执行 rpm -qa | grep qq 查询软件安装情况时报错 数据库损坏 db3 error(-30974) 一、问题描述&#xff1a; 在 linux 系统上&#xff0c;使用包管理工具 rpm 查询某一个软件安装情况&#xff0c;如&#xff1a;执行 rpm -qa | grep qq 时&#xff0c;报错 数据库损坏 db3 err…...

离线服务器上复现G3SR论文实验

代码地址:https://github.com/AllminerLab/Code-for-G3SR-master 论文地址:https://ieeexplore.ieee.org/abstract/document/9741079/ 因为直接按照作者的方法操作会出现问题,故笔者在这里记录一下的实验过程。 实验环境 python=3.6 pytorch pytorch的下载命令需要自行前往…...

Android 未来可能支持 Linux 应用,Linux 终端可能登陆 Android 平台

近日&#xff0c;根据 android authority 的消息&#xff0c;Google 正在开发适用于 Android 的 Linux 终端应用&#xff0c;而终端应用可以通过开发人员选项启用&#xff0c;并将 Debian 安装在虚拟机中。 在几周前&#xff0c;Google 的工程师开始为 Android 开发新的 Termi…...

PostgreSQL学习笔记十四:PL/Python自定义函数

在 PostgreSQL 中可以使用 PL/Python 语言来创建自定义函数。以下是一个示例步骤&#xff1a; 一、创建自定义函数 连接到 PostgreSQL 数据库&#xff0c;可以使用 psql 命令行工具或者通过数据库管理工具。 执行以下 SQL 语句创建一个简单的 PL/Python 函数&#xff1a; C…...

计算机毕业设计 | springboot商城售后管理系统 购物平台(附源码)

1&#xff0c;绪论 1.1 开发背景 在数字化时代的推动下&#xff0c;产品售后服务管理机构面临着信息化和网络化的挑战。传统的手工管理和纸质档案已经无法满足管理人员和读者的需求。为了提高产品售后服务管理机构的管理效率和服务质量&#xff0c;开发和实现一个基于Java的售…...

(全网独家)面试要懂运维真实案例:HDFS重新平衡(HDFS Balancer)没触发问题排查

在面试时&#xff0c;面试官为了考察面试者是否真的有经验&#xff0c;经常会问运维集群时遇到什么问题&#xff0c;解决具体流程。下面是自己遇到HDFS Balancer没执行&#xff0c;花了半天时间进行排查&#xff0c;全网独家的案例和解决方案。 目录 使用CDH自带重新平衡操作…...

【数据结构笔记】搜索树

二叉搜索树 任一节点x的左/右子树中&#xff0c;所有非空节点均不大于&#xff08;不小于&#xff09;x 必须是所有的非空节点&#xff0c;仅左右孩子不够&#xff08;左孩子的右孩子可能很大&#xff09;一棵二叉树是二叉搜索树当且仅当中序遍历序列是单调非降序列 两棵二叉…...

如何使用UART(STM32 HAL库)

UART &#xff08;通用异步收发器&#xff09;是在 USART &#xff08;通用同步异步收发器&#xff09;基础上裁剪掉了同步通信功能&#xff0c;只剩下异步通信功能。关于通信和串口的基本知识&#xff0c;可参见文章《串口通信简介-CSDN博客》和《数据通信的一些基础概念-CSDN…...

星巴克英语

用流利的英文点星巴克 一杯咖啡 英文中文英文中文barista咖啡师coffee maker家用咖啡机cup sleeve杯套coffee stirrer咖啡棒coffee cup lid咖啡杯盖子straw吸管latte art咖啡拉花for here内用to go外带 例句&#xff1a; Could I have a cup sleeve for my coffee , please…...

权重衰减与暂退法——paddle部分

权重衰减与暂退法——paddle部分 本文部分为paddle框架以及部分理论分析&#xff0c;torch框架对应代码可见权重衰减与暂退法torch import paddle print("paddle version:",paddle.__version__)paddle version: 2.6.1当我们谈论机器学习模型的性能时&#xff0c;经…...

golang获取当天最小的时间,以DateTime的string格式返回

推荐学习文档 golang应用级os框架&#xff0c;欢迎stargolang应用级os框架使用案例&#xff0c;欢迎star案例&#xff1a;基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识&#xff0c;这里有免费的golang学习笔…...

2025 - 中医学基础 - 考研 - 职称

2025 - 中医学基础 - 考研 - 职称 第1章 中医学导论 1.中医学的指导思想是&#xff08;&#xff09;( ) [单选] A&#xff0e;阴阳学说 B&#xff0e;五行学说 C&#xff0e;精气学说 D&#xff0e;整体观念 E&#xff0e;辨证论治 正确答案: D 2.中医学的理论核心是&…...

Pandas库

一、安装 Pandas是一个基于Python构建的专门进行数据操作和分析的开源软件库&#xff0c;它提供了高效的数据结构和丰富的数据操作工具。 安装 pip install pandas 二、核心数据结构 Pandas库中最常用的数据类型是Series和DataFrame&#xff1a; Series&#xff1a;一维数…...

Qt网络编程: 构建高效的HTTP文件下载器

文章目录 注意事项调用示例在使用Qt进行HTTP下载时,通常会使用QNetworkAccessManager类来管理HTTP请求和响应。这个类提供了进行网络请求的能力,包括下载文件。下面是使用Qt进行HTTP下载的一个示例,以及在实现时应考虑的一些注意事项。 注意事项 1.错误处理 始终检查QNetwo…...

Python 将Word, Excel, PDF和PPT文档转换为OFD格式

目录 使用工具 Python 将Word文档转换为OFD Python 将Excel文档转换为OFD Python 将PDF文档转换为OFD Python 将PPT文档转换为OFD OFD&#xff08;Open Fixed-layout Document&#xff09;是中国国家标准的电子文档格式&#xff0c;主要用于政府、金融等行业的正式文档传输…...

QD1-P21-P22 CSS 基础语法、注释、使用方法

本节学习&#xff1a;CSS 基础语法和注释&#xff0c;以及如何使用CSS定义的样式。 本节视频 https://www.bilibili.com/video/BV1n64y1U7oj?p21 CSS 基本语法 CSS&#xff08;层叠样式表&#xff09;的基本语法相对简单&#xff0c;由选择器和一组包含在花括号 {}​ 中的声…...

您是否也在寻找免费的 PDF 编辑器工具?10个备选PDF 编辑器工具

您是否也在寻找免费的 PDF 编辑器工具&#xff1f; 如果是&#xff0c;那么您在互联网上处于最佳位置&#xff01; 本指南中提到的所有 10 大免费 PDF 编辑器工具都易于使用&#xff0c;可以允许您添加文本、更改图像、添加图形、填写表格、添加签名等等。 因此&#xff0c;…...

C++调试方法(Vscode)(一) ——本地调试

初学者在调试一段代码的时候&#xff0c;经常出于不明原因&#xff0c;写出bug&#xff0c;导致程序崩溃。但是定位崩溃的地方时&#xff0c;往往采用简单而朴素的方法&#xff1a;即采用cout或者printf进行输出。这种方式既原始&#xff0c;又低效。一个合格的工程师应该是通过…...

C语言 | Leetcode C语言题解之第460题LFU缓存

题目&#xff1a; 题解&#xff1a; /* 数值链表的节点定义。 */ typedef struct ValueListNode_s {int key;int value;int counter;struct ValueListNode_s *prev;struct ValueListNode_s *next; } ValueListNode;/* 计数链表的节点定义。 其中&#xff0c;head是数值链表的头…...

【AI论文精读12】RAG论文综述2(微软亚研院 2409)P4-隐性事实查询L2

AI知识点总结&#xff1a;【AI知识点】 AI论文精读、项目、思考&#xff1a;【AI修炼之路】 P1&#xff0c;P2&#xff0c;P3 四、隐性事实查询&#xff08;L2&#xff09; 4.1 概述 ps&#xff1a;P2有四种查询&#xff08;L1&#xff0c;L2&#xff0c;L3&#xff0c;L4&…...

SpringBoot中间件Docker

Docker&#xff08;属于C/S架构软件&#xff09; 简介与概述 1.Docker 是一个开源的应用容器引擎&#xff0c;基于 Go 语言 并遵从 Apache2.0 协议开源。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中&#xff0c;然后发布到任何流行的 Linux …...

计算机毕设选题推荐【大数据专业】

计算机毕设选题推荐【大数据专业】 大数据专业的毕业设计需要结合数据的采集、存储、处理与分析等方面的技能。为帮助同学们找到一个适合且具有实践性的选题&#xff0c;我们为大家整理了50个精选的毕设选题。这些选题涵盖了大数据分析、处理技术、可视化等多个方向&#xff0…...

Bootstrap 4 多媒体对象

Bootstrap 4 多媒体对象 引言 Bootstrap 4 是目前最受欢迎的前端框架之一,它提供了一套丰富的工具和组件,帮助开发者快速构建响应式和移动设备优先的网页。在本文中,我们将重点探讨 Bootstrap 4 中的多媒体对象(Media Object)组件,这是一种用于构建复杂和灵活布局的强大…...

Springmvc Thymeleaf 标签

Thymeleaf是一个适用于Java的模板引擎&#xff0c;它允许开发者将动态内容嵌入到HTML页面中。在SpringMVC框架中&#xff0c;Thymeleaf可以作为一个视图解析器&#xff0c;使得开发者能够轻松地创建动态网页。以下是关于SpringMVC中Thymeleaf标签的详细介绍&#xff1a; 一、T…...

用java来编写web界面

一、ssm框架整体目录架构 二、编写后端代码 1、编写实体层代码 实体层代码就是你的对象 entity package com.cv.entity;public class Apple {private Integer id;private String name;private Integer quantity;private Integer price;private Integer categoryId;public…...

如何利用Fiddler进行抓包并自动化

首先一般使用Fiddler都是对手机模拟器进行抓包 接下来以MUMU模拟器为例 首先打开Fiddler-->tool-->options-->connection 将要打上的勾都打上&#xff0c;可以看到代理的端口是8888 打开HTTPS选项 把要打的勾打上&#xff0c;这样子才可以接收到HTTPS的包 MUMU打开…...

权重衰减与暂退法——pytorch与paddle实现模型正则化

权重衰减与暂退法——pytorch与paddle实现模型正则化 在深度学习中&#xff0c;模型正则化是一种至关重要的技术&#xff0c;它有助于防止模型过拟合&#xff0c;提高泛化能力。过拟合是指在训练数据上表现良好&#xff0c;但在测试数据或新数据上表现不佳的现象。为了缓解这一…...

MYSQL-windows安装配置两个或多个版本MYSQL

安装第一个mysql很简单&#xff0c;这里不再赘述。主要说说第二个怎么安装&#xff0c;服务怎么配置。 1. 从官网下载第二个MySQL并安装 一般都是免安装版了&#xff0c;下载解压到某个文件目录下(路径中尽量不要带空格或中文)&#xff0c;再新建一个my.ini文件&#xff08;或…...