当前位置: 首页 > news >正文

基于YOLO11深度学习的非机动车驾驶员头盔检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、卷积神经网络

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【车辆检测追踪与流量计数系统】
49.【行人检测追踪与双向流量计数系统】50.【基于YOLOv8深度学习的反光衣检测与预警系统】
51.【危险区域人员闯入检测与报警系统】52.【高密度人脸智能检测与统计系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

基本功能演示

基于深度学习的非机动车驾驶员头盔检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、

摘要:非机动车驾驶员头盔检测系统通过先进的视觉识别技术加强了道路安全管理,降低了头部受伤的风险,从而有效减少了交通事故的发生。它可以被广泛应用于城市交通监控、执法、安全教育、事故分析和保险评估等多个领域,发挥着重要的社会安全功能。本文基于YOLO11深度学习框架,通过764非机动车驾驶员头盔佩戴情况的相关图片,分别训练了可进行非机动车驾驶员头盔目标检测的模型,可以检测是否佩戴头盔两种状态。最终基于训练好的模型制作了一款带UI界面的非机动车驾驶员头盔检测系统,更便于进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 研究背景
  • 主要工作内容
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • 检测结果说明
    • 主要功能说明
    • (1)图片检测说明
    • (2)视频检测说明
    • (3)摄像头检测说明
    • (4)保存图片与视频检测说明
  • 二、YOLO11简介
  • 二、模型训练、评估与推理
    • 1. 数据集准备与训练
    • 2.模型训练
    • 3. 训练结果评估
    • 4. 使用模型进行推理
  • 三、可视化系统制作
    • Pyqt5简介
      • 1. 基本架构
      • 2. 事件驱动编程
      • 3. Qt 对象模型
      • 4. 部件(Widgets)
      • 5. 布局管理
      • 6. 资源管理
      • 7. 信号与槽机制
      • 8. 跨平台性
  • 【获取方式】

点击跳转至文末《完整相关文件及源码》获取


研究背景

非机动车驾驶员头盔检测系统在提升道路交通安全中起着至关重要的作用。通过利用YOLO11深度学习框架,该系统能够及时准确地判断非机动车驾驶或乘坐人员是否佩戴头盔,从而有助于预防交通事故的发生,保护驾驶员及乘客的生命安全,并且促使驾驶员养成佩戴头盔的良好习惯。

其主要应用场景包括:
交通监控:在城市道路和交通节点,监控摩托车、电动车等非机动车驾驶者是否佩戴头盔。
交通执法:辅助交通警察进行执法,自动识别违规不佩戴头盔的行为并进行取证。
安全宣传:在安全教育和宣传中,利用该系统的数据进行分析,提高公众安全意识。
事故分析:在交通事故调查中,验证事故发生时当事人是否佩戴头盔,作为判断责任的依据之一。
企业安全管理:在具有非机动车运营的企业内,确保员工遵守安全规范,违规者自动记录并提醒。
社区管理:在住宅区等社区的道路上监控,提高居民安全。
校园安全:在校园及其周边道路上使用,保护学生骑车安全。

总结来说,非机动车驾驶员头盔检测系统通过先进的视觉识别技术加强了道路安全管理,降低了头部受伤的风险,从而有效减少了交通事故的发生。它可以被广泛应用于城市交通监控、执法、安全教育、事故分析和保险评估等多个领域,发挥着重要的社会安全功能。随着城市化进程的加快,这一系统的应用将为非机动车交通安全提供重要保障。

主要工作内容

本文的主要内容包括以下几个方面:

  1. 搜集与整理数据集:搜集整理实际场景中非机动车驾驶员头盔佩戴的相关数据图片,并进行相应的数据处理,为模型训练提供训练数据集;
  2. 训练模型:基于整理的数据集,根据最前沿的YOLO11目标检测技术训练目标检测模型,实现对需要检测的对象进行实时检测功能;
  3. 可视化系统制作:,基于训练出的目标检测模型,搭配Pyqt5制作的UI界面,用python开发了一款界面简洁的水果质量好坏智能检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可用于实际场景中非机动车驾驶员头盔检测,分为两个检测类别:['戴头盔', '未戴头盔'];
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存
5. 支持将图片的检测结果保存为csv文件;

界面参数设置说明

在这里插入图片描述
置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

检测结果说明

在这里插入图片描述

显示标签名称与置信度:表示是否在检测图片上标签名称与置信度,显示默认勾选,如果不勾选则不会在检测图片上显示标签名称与置信度;
总目标数:表示画面中检测出的目标数目;
目标选择:可选择单个目标进行位置信息、置信度查看。
目标位置:表示所选择目标的检测框,左上角与右下角的坐标位置。默认显示的是置信度最大的一个目标信息;

主要功能说明

功能视频演示见文章开头,以下是简要的操作描述。

(1)图片检测说明

点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下,同时会将图片检测信息保存csv文件
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。

(2)视频检测说明

点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测说明

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。

(4)保存图片与视频检测说明

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存,对于图片图片检测还会保存检测结果为csv文件,方便进行查看与后续使用。检测的图片与视频结果会存储在save_data目录下。
注:暂不支持视频文件的检测结果保存为csv文件格式。

保存的检测结果文件如下:
在这里插入图片描述

图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。
在这里插入图片描述

二、YOLO11简介

YOLO11源码地址:https://github.com/ultralytics/ultralytics

Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
在这里插入图片描述

YOLO11创新点如下:

YOLO 11主要改进包括:
增强的特征提取:YOLO 11采用了改进的骨干和颈部架构,增强了特征提取功能,以实现更精确的目标检测。
优化的效率和速度:优化的架构设计和优化的训练管道提供更快的处理速度,同时保持准确性和性能之间的平衡。
更高的精度,更少的参数:YOLO11m在COCO数据集上实现了更高的平均精度(mAP),参数比YOLOv8m少22%,使其在不影响精度的情况下提高了计算效率。
跨环境的适应性:YOLO 11可以部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统。
广泛的支持任务:YOLO 11支持各种计算机视觉任务,如对象检测、实例分割、图像分类、姿态估计和面向对象检测(OBB)。

YOLO11不同模型尺寸信息:

YOLO11 提供5种不同的型号规模模型,以满足不同的应用需求:

Modelsize (pixels)mAPval 50-95Speed CPU ONNX (ms)Speed T4 TensorRT10 (ms)params (M)FLOPs (B)
YOLO11n64039.556.1 ± 0.81.5 ± 0.02.66.5
YOLO11s64047.090.0 ± 1.22.5 ± 0.09.421.5
YOLO11m64051.5183.2 ± 2.04.7 ± 0.120.168.0
YOLO11l64053.4238.6 ± 1.46.2 ± 0.125.386.9
YOLO11x64054.7462.8 ± 6.711.3 ± 0.256.9194.9

二、模型训练、评估与推理

1. 数据集准备与训练

通过网络上搜集关于实际场景中非机动车驾驶人员的相关图片,并使用Labelimg标注工具对每张图片进行标注,分两个检测类别,分别是'戴头盔', '未戴头盔'

最终数据集一共包含764张图片,其中训练集包含611张图片验证集包含153张图片
部分图像及标注如下图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集各类别数目分布如下:
在这里插入图片描述

2.模型训练

准备好数据集后,将图片数据以如下格式放置在项目目录中。在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: D:\2MyCVProgram\2DetectProgram\BikeHelmetDetection_v11\datasets\Data\train
val: D:\2MyCVProgram\2DetectProgram\BikeHelmetDetection_v11\datasets\Data\valnc: 2
names: ['With Helmet', 'Without Helmet']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/11/yolo11.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolo11n.pt'if __name__ == '__main__':#加载预训练模型model = YOLO(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=150,      # 训练轮数batch=4,         # batch大小name='train_v11', # 保存结果的文件夹名称optimizer='SGD') # 优化器

模型常用训练超参数参数说明:
YOLOv11 模型的训练设置包括训练过程中使用的各种超参数和配置。这些设置会影响模型的性能、速度和准确性。关键的训练设置包括批量大小、学习率、动量和权重衰减。此外,优化器、损失函数和训练数据集组成的选择也会影响训练过程。对这些设置进行仔细的调整和实验对于优化性能至关重要。
以下是一些常用的模型训练参数和说明:

参数名默认值说明
modelNone指定用于训练的模型文件。接受指向 .pt 预训练模型或 .yaml 配置文件。对于定义模型结构或初始化权重至关重要。
dataNone数据集配置文件的路径(例如 coco8.yaml).该文件包含特定于数据集的参数,包括训练数据和验证数据的路径、类名和类数。
epochs100训练总轮数。每个epoch代表对整个数据集进行一次完整的训练。调整该值会影响训练时间和模型性能。
patience100在验证指标没有改善的情况下,提前停止训练所需的epoch数。当性能趋于平稳时停止训练,有助于防止过度拟合。
batch16批量大小,有三种模式:设置为整数(例如,’ Batch =16 ‘), 60% GPU内存利用率的自动模式(’ Batch =-1 ‘),或指定利用率分数的自动模式(’ Batch =0.70 ')。
imgsz640用于训练的目标图像尺寸。所有图像在输入模型前都会被调整到这一尺寸。影响模型精度和计算复杂度。
deviceNone指定用于训练的计算设备:单个 GPU (device=0)、多个 GPU (device=0,1)、CPU (device=cpu),或苹果芯片的 MPS (device=mps).
workers8加载数据的工作线程数(每 RANK 多 GPU 训练)。影响数据预处理和输入模型的速度,尤其适用于多 GPU 设置。
nameNone训练运行的名称。用于在项目文件夹内创建一个子目录,用于存储训练日志和输出结果。
pretrainedTrue决定是否从预处理模型开始训练。可以是布尔值,也可以是加载权重的特定模型的字符串路径。提高训练效率和模型性能。
optimizer'auto'为训练模型选择优化器。选项包括 SGD, Adam, AdamW, NAdam, RAdam, RMSProp 等,或 auto 用于根据模型配置进行自动选择。影响收敛速度和稳定性
lr00.01初始学习率(即 SGD=1E-2, Adam=1E-3) .调整这个值对优化过程至关重要,会影响模型权重的更新速度。
lrf0.01最终学习率占初始学习率的百分比 = (lr0 * lrf),与调度程序结合使用,随着时间的推移调整学习率。

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLO11在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5值为0.864,结果还是十分不错的。
在这里插入图片描述

4. 使用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/BikesHelmets38.png"# 加载预训练模型
model = YOLO(path, task='detect')# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

更多检测结果如下:
在这里插入图片描述
在这里插入图片描述

三、可视化系统制作

基于上述训练出的目标检测模型,为了给此检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。本文基于Pyqt5开发了一个可视化的系统界面,通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。【系统详细展示见第一部分内容】

Pyqt5简介

PyQt5 是用于 Python 编程语言的一个绑定库,提供了对 Qt 应用程序框架的访问。它常用于开发跨平台的桌面应用程序,具有丰富的功能和广泛的控件支持。PyQt5 提供了一个功能强大且灵活的框架,可以帮助 Python 开发者迅速构建复杂的桌面应用程序。其事件驱动编程模型、丰富的控件和布局管理、强大的信号与槽机制以及跨平台能力,使得 PyQt5 成为开发桌面应用程序的理想选择。下面对PyQt5 的基本原理进行详细介绍:

1. 基本架构

PyQt5 是 Python 和 Qt 库之间的一层接口,Python 程序员可以通过 PyQt5 访问 Qt 库的所有功能。Qt 是由 C++ 编写的跨平台软件开发框架,PyQt5 使用 SIP(一个用于创建 Python 与 C/C++ 语言之间的绑定工具)将这些功能导出到 Python。

2. 事件驱动编程

PyQt5 基于事件驱动编程模型,主要通过信号(signals)和槽(slots)机制实现用户与应用程序之间的交互。当用户与 GUI 进行交互(如点击按钮、调整滑块等)时,会触发信号,这些信号可以连接到槽函数或方法,以执行特定操作。

from PyQt5.QtWidgets import QApplication, QPushButtondef on_click():print("Button clicked!")app = QApplication([])
button = QPushButton('Click Me')
button.clicked.connect(on_click)
button.show()
app.exec_()

3. Qt 对象模型

PyQt5 的核心是 Qt 对象模型,所有的控件和窗口部件都是从 QObject 类派生而来的。它们拥有复杂的父子关系,确保父对象在销毁时自动销毁所有子对象,避免内存泄漏。

4. 部件(Widgets)

PyQt5 提供了丰富的内置部件,如按钮、标签、文本框、表格、树、标签页等,几乎涵盖了所有常见的 GUI 控件。这些部件可以直接使用,也可以通过继承进行自定义。

from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QVBoxLayoutapp = QApplication([])window = QWidget()
layout = QVBoxLayout()label = QLabel('Hello, PyQt5!')
layout.addWidget(label)window.setLayout(layout)
window.show()
app.exec_()

5. 布局管理

PyQt5 提供了强大的布局管理功能,可以通过 QLayout 和其子类(如 QHBoxLayout, QVBoxLayout, QGridLayout)来控制部件在窗口内的摆放方式。这使得界面的设计变得灵活且易于维护。

6. 资源管理

PyQt5 支持资源文件管理,可以将图像、图标、样式表等资源打包进应用程序中。资源文件通常以 .qrc 格式存储,并通过资源管理器集成到应用程序中。

7. 信号与槽机制

信号与槽机制是 Qt 框架的核心特性之一,它允许对象之间进行松耦合通信。通过信号可以触发槽函数来处理各种事件,使代码逻辑更加清晰和模块化。

8. 跨平台性

PyQt5 是跨平台的,支持 Windows、Mac 和 Linux 等操作系统,编写一次代码即可运行在多个平台上。此外,PyQt5 还支持多语言国际化,助力开发全球化的应用程序。

博主基于Pyqt5框架开发了此款非机动车驾驶员头盔检测系统即文中第一部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存
在这里插入图片描述

其目的是为检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。这不仅提升了系统的可用性和用户体验,还使得检测过程更加直观透明,便于结果的实时观察和分析。此外,GUI还可以集成其他功能,如检测结果的保存与导出、检测参数的调整,从而为用户提供一个全面、综合的检测工作环境,促进智能检测技术的广泛应用。

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、训练好的模型、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式

相关文章:

基于YOLO11深度学习的非机动车驾驶员头盔检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、卷积神经网络

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

图像分类-demo(Lenet),tensorflow和Alexnet

目录 demo(Lenet) 代码实现基本步骤: TensorFlow 一、核心概念 二、主要特点 三、简单实现 参数: 模型编译 模型训练 模型评估 Alexnet model.py train.py predict.py demo(Lenet) PyTorch提供了一个名为“torchvision”的附加库,其中包含…...

excel 单元格嵌入图片

1.图片右键,设置图片格式 2.属性 随单元格改为位置和大小 这样的话,图片就会嵌入到单元格,也会跟着单元格的大小而改变...

GitHub简介与安装使用入门教程

1、Git与GitHub的简介 Git是目前世界上最先进的分布式控制系统,它允许开发者跟踪和管理源代码的改动历史记录等,可以将你的代码恢复到某一个版本,支持多人协作开发。它的核心功能包括版本控制、分支管理、合并和冲突解决等,其操作…...

HTML(五)列表详解

在HTML中&#xff0c;列表可以分为两种&#xff0c;一种为有序列表。另一种为无序列表 今天就来详细讲解一下这两种列表如何实现&#xff0c;效果如何 1.有序列表 有序列表的标准格式如下&#xff1a; <ol><li>列表项一</li><li>列表项二</li>…...

SparkSQL介绍及使用

SparkSQL介绍及使用 一、什么是SparkSQL&#xff08;了解&#xff09; spark开发时可以使用rdd进行开发&#xff0c;spark还提供saprksql工具&#xff0c;将数据转为结构化数据进行操作 1-1 介绍 官网&#xff1a;https://spark.apache.org/sql/ Spark SQL是 Apache Spark 用于…...

【聚星文社】3.2版一键推文工具更新啦

【聚星文社】3.2版一键推文工具更新啦。调试了好几个通宵就是为了效果和质量。 旧版尽早更新新版&#xff0c;从此告别手搓&#xff01; 工具入口https://iimenvrieak.feishu.cn/docx/ZhRNdEWT6oGdCwxdhOPcdds7nof...

C++基础补充(03)C++20 的 std::format 函数

文章目录 1. 使用C20 std::format2. 基本用法3. 格式说明 1. 使用C20 std::format 需要将VisualStudio默认的标准修改为C20 菜单“项目”-“项目属性”&#xff0c;打开如下对话框 代码中加入头文件 2. 基本用法 通过占位符{}制定格式化的位置&#xff0c;后面传入变量 #…...

[论文笔记]DAPR: A Benchmark on Document-Aware Passage Retrieval

引言 今天带来论文DAPR: A Benchmark on Document-Aware Passage Retrieval的笔记。 本文提出了一个基准&#xff1a;文档感知段落检索(Document-Aware Passage Retrieval,DAPR)以及介绍了一些上下文段落表示的方法。 为了简单&#xff0c;下文中以翻译的口吻记录&#xff0c…...

Spring Boot知识管理:智能搜索与分析

3系统分析 3.1可行性分析 通过对本知识管理系统实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本知识管理系统采用JAVA作为开发语言&#xff0c;Spring Boot框…...

操作系统(2) (进程调度/进程调度器类型/三种进程调度/调度算法)

目录 1. 介绍进程调度&#xff08;Introduction to Process Scheduling&#xff09; 2. 优先级调度&#xff08;Priority Scheduling&#xff09; 3. CPU 利用率&#xff08;CPU Utilization&#xff09; 4. 吞吐量&#xff08;Throughput&#xff09; 5. 周转时间&#xf…...

鸿蒙--知乎评论

这里我们将采用组件化的思想进行开发 在开发中默认展示的是首页也就是 pages/Index.ets页面 这里存放的是所有页面的配置文件,类似与uniapp中的pages.json 如果我们此时要更改默认显示Zh...

2024 - 两台CentOS服务器上的1000个Docker容器(每台500个)之间实现UDP通信(C语言版本)

两台CentOS服务器上的1000个Docker容器&#xff08;每台500个&#xff09;之间实现UDP通信(C语言版本) 给女朋友对象写得&#xff0c;她不会&#xff0c;我就写了一个 为了帮助您在两台CentOS服务器上的1000个Docker容器&#xff08;每台500个&#xff09;之间实现UDP通信&…...

小程序该如何上架

小程序的上架流程通常包括准备工作、代码审核、人工审核以及上线发布等关键步骤。以下是一个详细的小程序上架指南&#xff1a; 一、准备工作 注册开发者账号&#xff1a; 在微信小程序平台或支付宝开放平台等相应的小程序发布平台上注册开发者账号。 开发小程序&#xff1a; …...

XMOJ3065 旅游线路

10分钟没啥思路就去看题解了&#xff0c;结果发现很蠢。 题目大意 有一条河&#xff0c;河的东侧和西侧分别有 n , m n,m n,m 个景点&#xff0c;每个景点有个权值。有 k k k 条船&#xff0c;每条船连接东侧和西侧的一个景点。定义一个旅游线路是通过船连接起来的景点序列…...

量化之一:均值回归策略

文章目录 均值回归策略理论基础数学公式 关键指标简单移动平均线&#xff08;SMA&#xff09;标准差Z-Score 交易信号实际应用优缺点分析优点缺点 结论 实践backtrader参数&#xff1a;正常情况&#xff1a;异常情况&#xff1a; 均值回归策略 均值回归&#xff08;Mean Rever…...

NVIDIA Bluefield DPU上的启动流程4个阶段分别是什么?作用是什么?

文章目录 Bluefield上的硬件介绍启动流程启动流程:eMMC中的两个存储分区:ATF介绍ATF启动的四个阶段:四个主要步骤:各个阶段依赖的启动文件一次烧录fw失败后的信息看启动流程综述Bluefield上的硬件介绍 本文以Bluefield2为例,可以看到RSHIM实际上是Boot相关的集合。也能看…...

最优美公式-欧拉公式,轻松理解版

Alan Becker创作的火柴人大战数学的打斗视频&#xff0c;风靡一时&#xff0c;并在B站荣耀斩获了“金知奖”。下面是网友对此视频的部分评价截图。 视频原址&#xff1a;火柴人 vs 数学&#xff0c;后续又一口气看完了“火柴人vs 几何”与“火柴人vs 物理”&#xff0c;通过火柴…...

【力扣 | SQL题 | 每日3题】力扣1107,1112, 1077

今天三道mid题都可以用窗口函数轻松秒杀。 1. 力扣1107&#xff1a;每日新用户统计 1.1 题目&#xff1a; Traffic 表&#xff1a; ------------------------ | Column Name | Type | ------------------------ | user_id | int | | activity | enum …...

计算机网络(十一) —— 数据链路层

目录 一&#xff0c;关于数据链路层 二&#xff0c;以太网协议 2.1 局域网 2.2 Mac地址 2.3 Mac帧报头 2.4 MTU 三&#xff0c;ARP协议 3.1 ARP是什么 3.2 ARP原理 3.3 ARP报头 3.4 模拟ARP过程 3.5 ARP周边问题 四&#xff0c;NAT技术 4.1 NAT技术背景 4.2 NAT转…...

使用PyTorch从0实现Fashion-MNIST数据集分类

完整代码&#xff1a; from d2l import torch as d2l import torch from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader import matplotlib.pyplot as plt from IPython import displaydef get_fashion_mnist_la…...

Java数组的值拷贝和地址拷贝

在Java中&#xff0c;数组的值拷贝和地址拷贝是两种不同的操作。 值拷贝是指将一个数组的值复制到另一个新的数组中。这意味着新数组和原数组独立存在&#xff0c;修改其中一个数组不会影响另一个数组。Java中的数组是对象&#xff0c;所以通过值拷贝操作实际上是复制了数组对…...

类与对象 中(剩余部分) 以及 日历

运算符重载 • 当运算符被⽤于类类型的对象时&#xff0c;C语⾔允许我们通过运算符重载的形式指定新的含义。C规定类类型对象使⽤运算符时&#xff0c;必须转换成调⽤对应运算符重载&#xff0c;若没有对应的运算符重载&#xff0c;则会编译报错。 • 运算符重载是具有特名字的…...

iOS 14 自定义画中画悬浮窗 Custom AVPictureInPictureController 实现方案

iOS 14&#xff0c;基于 AVPictureInPictureController&#xff0c;实现自定义画中画&#xff0c;涵盖所有功能与难点。 市面上的各种悬浮钟和提词器的原理都是基于此。 Demo源码在文末。 使用 iOS 画中画的要求&#xff1a; 真机&#xff0c;不能使用模拟器&#xff1b;iO…...

【C#生态园】完整解读C#网络通信库:从基础到实战应用

探索C#网络通信库&#xff1a;功能、用途和最佳实践 前言 随着互联网的快速发展&#xff0c;网络通信在现代软件开发中扮演着至关重要的角色。C#作为一种流行的编程语言&#xff0c;拥有多个优秀的网络通信库&#xff0c;为开发人员提供了丰富的选择。本文将深入探讨几种常用…...

js面试题---事件委托是什么

事件委托是JavaScript中的一种事件处理模式&#xff0c;通过将事件处理程序绑定到父元素&#xff0c;而不是直接绑定到每个子元素&#xff0c;从而优化事件管理和提高性能。 1 工作原理 事件冒泡&#xff1a;当一个事件在某个元素上发生时&#xff0c;它会从该元素向上冒泡到…...

谷歌浏览器 文件下载提示网络错误

情况描述&#xff1a; 谷歌版本&#xff1a;129.0.6668.90 (正式版本) &#xff08;64 位&#xff09; (cohort: Control)其他浏览器&#xff0c;比如火狐没有问题&#xff0c;但是谷歌会下载失败&#xff0c;故推断为谷歌浏览器导致的问题小文件比如1、2M会成功&#xff0c;大…...

【记录】PPT|PPT 箭头相交怎么跨过

众所周知&#xff0c;在PPT中实现“跨线”效果并非直接可行&#xff0c;这一功能仅存在于Visio中。然而&#xff0c;通过一些巧妙的方法&#xff0c;我们可以在PPT中模拟出类似的效果。怎么在PPT中画交叉但不重叠的线-百度经验中介绍了一种方法&#xff0c;而本文将介绍一种改进…...

Linux中如何修改root密码

在 Linux 中&#xff0c;修改 root 用户密码可以通过以下步骤进行。你需要具有超级用户权限才能执行这些操作。 方法一&#xff1a;使用 passwd 命令修改 root 密码 使用具有超级用户权限的账户登录 如果你已经以 root 身份登录&#xff0c;或者你当前账户具备超级用户权限&am…...

中间件:SpringBoot集成Redis

一、Redis简介 Redis是一个开源的、基于内存的数据结构存储系统&#xff0c;它可以用作数据库、缓存和消息中间件。Redis支持多种类型的数据结构&#xff0c;如字符串&#xff08;strings&#xff09;、哈希&#xff08;hashes&#xff09;、列表&#xff08;lists&#xff09…...