闭着眼学机器学习——支持向量机分类
引言:
在正文开始之前,首先给大家介绍一个不错的人工智能学习教程:https://www.captainbed.cn/bbs。其中包含了机器学习、深度学习、强化学习等系列教程,感兴趣的读者可以自行查阅。
1. 算法介绍
支持向量机(Support Vector Machine, SVM) 是一种强大的监督学习算法,广泛应用于分类和回归问题。SVM的主要目标是找到一个最优的超平面,将不同类别的数据点分开,同时最大化类别之间的间隔。
SVM的主要特点包括:
- 高效处理高维数据
- 通过核技巧处理非线性问题
- 泛化能力强
- 对异常点具有鲁棒性
2. 算法原理
2.1 线性可分情况
对于线性可分的数据,SVM试图找到一个最优的超平面,使得:
- 正确分类所有训练样本
- 最大化分类间隔(即支持向量到超平面的距离)
数学表达式如下:
最大化: 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2
约束条件: y i ( w T x i + b ) ≥ 1 , i = 1 , 2 , . . . , n y_i(w^Tx_i + b) \geq 1, i=1,2,...,n yi(wTxi+b)≥1,i=1,2,...,n
其中, w w w是超平面的法向量, b b b是偏置项, x i x_i xi是输入样本, y i y_i yi是类别标签。
2.2 非线性情况
对于非线性可分的数据,SVM使用核技巧将原始特征空间映射到高维空间,在高维空间中寻找线性分类边界。常用的核函数包括:
- 多项式核: K ( x i , x j ) = ( x i T x j + c ) d K(x_i, x_j) = (x_i^T x_j + c)^d K(xi,xj)=(xiTxj+c)d
- 高斯核(RBF): K ( x i , x j ) = e x p ( − γ ∣ ∣ x i − x j ∣ ∣ 2 ) K(x_i, x_j) = exp(-\gamma ||x_i - x_j||^2) K(xi,xj)=exp(−γ∣∣xi−xj∣∣2)
- Sigmoid核: K ( x i , x j ) = t a n h ( a x i T x j + r ) K(x_i, x_j) = tanh(ax_i^T x_j + r) K(xi,xj)=tanh(axiTxj+r)
3. 案例分析: 鸢尾花分类
我们将使用著名的鸢尾花(Iris)数据集来演示SVM的应用。
我们使用了鸢尾花数据集中的花瓣长度和宽度作为特征,训练一个SVM分类器来区分三种不同的鸢尾花品种。我们使用RBF核函数,并通过可视化展示SVM的决策边界。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, svm
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import label_binarize
from itertools import cycle# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题# 加载数据
iris = datasets.load_iris()
X = iris.data[:, [0, 1]] # 只使用花瓣长度和宽度
y = iris.target# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建SVM分类器
svm_classifier = svm.SVC(kernel='rbf', C=1.0, gamma='scale', probability=True)# 训练模型
svm_classifier.fit(X_train, y_train)# 预测
y_pred = svm_classifier.predict(X_test)# 计算准确率
accuracy = np.mean(y_pred == y_test)
print(f"准确率: {accuracy:.2f}")# 可视化决策边界
def plot_decision_boundary(X, y, model, ax=None):if ax is None:ax = plt.gca()x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, 0.02),np.arange(x2_min, x2_max, 0.02))Z = model.predict(np.c_[xx1.ravel(), xx2.ravel()])Z = Z.reshape(xx1.shape)ax.contourf(xx1, xx2, Z, alpha=0.4)ax.scatter(X[:, 0], X[:, 1], c=y, alpha=0.8)ax.set_xlabel('花瓣长度')ax.set_ylabel('花瓣宽度')return axplt.figure(figsize=(10, 8))
plot_decision_boundary(X, y, svm_classifier)
plt.title('SVM分类结果 - 鸢尾花数据集')
plt.show()
运行代码得到分类的准确率为0.8。
绘制分类结果如下:
接下来绘制分类的ROC曲线:
# 绘制ROC曲线
y_test_bin = label_binarize(y_test, classes=[0, 1, 2])
y_score = svm_classifier.predict_proba(X_test)fpr = dict()
tpr = dict()
roc_auc = dict()
n_classes = 3for i in range(n_classes):fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_score[:, i])roc_auc[i] = auc(fpr[i], tpr[i])plt.figure(figsize=(10, 8))
colors = cycle(['blue', 'red', 'green'])
for i, color in zip(range(n_classes), colors):plt.plot(fpr[i], tpr[i], color=color, lw=2,label='ROC曲线 (类别 {0}) (AUC = {1:0.2f})'''.format(i, roc_auc[i]))plt.plot([0, 1], [0, 1], 'k--', lw=2)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('假正例率')
plt.ylabel('真正例率')
plt.title('多类别ROC曲线')
plt.legend(loc="lower right")
plt.show()
通过这个案例,我们可以看到SVM在多类别分类问题上的应用,以及它处理非线性决策边界的能力。SVM成功地将三种鸢尾花品种分开,并在测试集上取得了较高的准确率。
4. 总结
支持向量机是一种强大而灵活的机器学习算法,特别适合处理复杂的分类问题。通过核技巧,SVM可以有效地处理高维数据和非线性问题。然而,SVM也有一些局限性,如对大规模数据集的训练时间较长,以及核函数的选择和参数调优可能比较复杂。因此,在使用SVM时,需要根据具体问题和数据特点来权衡其优缺点。
相关文章:

闭着眼学机器学习——支持向量机分类
引言: 在正文开始之前,首先给大家介绍一个不错的人工智能学习教程:https://www.captainbed.cn/bbs。其中包含了机器学习、深度学习、强化学习等系列教程,感兴趣的读者可以自行查阅。 1. 算法介绍 支持向量机(Support Vector Mach…...

今日指数项目day8实战权限管理器(上)
3.权限管理器 3.1 权限列表展示功能 1)原型效果 2)接口说明 功能描述: 查询所有权限集合 服务路径: /api/permissions 服务方法:Get 请求参数:无响应数据格式: {"code": 1,"data":…...

《机器学习与数据挖掘综合实践》实训课程教学解决方案
一、引言 随着信息技术的飞速发展,人工智能已成为推动社会进步的重要力量。作为人工智能的核心技术之一,机器学习与数据挖掘在各行各业的应用日益广泛。本方案旨在通过系统的理论教学、丰富的实践案例和先进的实训平台,帮助学生掌握机器学习…...
linux中软连接和硬链接的区别
定义与概念 硬链接(Hard Link):硬链接是文件系统中的一个概念,它直接指向文件系统中的物理数据块。可以把硬链接看作是原始文件的一个别名,它们共享相同的inode(索引节点)编号。在Linux文件系统…...
#Swift 对比 Static 在Swift 和 OC中的用法
在 Objective-C 和 Swift 中,static 关键字都用于定义类型级别的成员,但它们的用法和行为在两个语言中有所不同。让我们来详细对比一下 Objective-C 和 Swift 中 static 的使用方式和特性。 1. Objective-C 中的 static 在 Objective-C 中,…...

yakit使用教程(三,端口探测和指纹扫描)
本文仅作为学习参考使用,本文作者对任何使用本文进行渗透攻击破坏不负任何责任。 前言: 前文链接:yakit下载安装教程。 1.端口扫描的作用。 对目标端口进行扫描可以知道目标服务器开启了什么服务,以便于针对其所存在的服务展开…...

一维数组的引用
#define SIZE 5 int main(void) { int i 0; int arr[SIZE] { 86,85,85,896,45 };//同理五个数据只是偶然,可能会更多 //输入 for (i 0;i < SIZE;i) { printf("请输入你的第%d个值:",i1); scanf_s(&…...
Vue3 watch 监视属性
作用:监视数据的变化(和Vue2中的watch作用一致)特点:Vue3中的watch只能监视以下四种数据: ref定义的数据。reactive定义的数据。函数返回一个值(getter函数)。一个包含上述内容的数组。 我们在V…...

大数据-158 Apache Kylin 安装配置详解 集群模式启动
点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...

PHP商会招商项目系统一站式服务助力企业腾飞
商会招商项目系统——一站式服务,助力企业腾飞 🚀💼 🚀 开篇:企业成长的加速器,商会招商项目系统来袭 在竞争激烈的市场环境中,企业如何快速找到适合自己的发展路径,实现腾飞&…...
pnpm 和 npm
pnpm 和 npm 是 JavaScript 生态系统中常用的包管理工具,它们各自有不同的特性和优缺点。下面是这两者的详细比较: 1. 基本概念 npm (Node Package Manager): 是 Node.js 的默认包管理器,提供安装、更新、卸载 JavaScript 包的功…...

笔试算法总结
文章目录 题目1题目2题目3题目4 题目1 使用 StringBuilder 模拟栈的行为,通过判断相邻2个字符是否相同,如果相同就进行删除 public class Main {public static String fun(String s) {if (s null || s.length() < 1) return s;StringBuilder builde…...

mybatisPlus对于pgSQL中UUID和UUID[]类型的交互
在PGSQL中,有的类型是UUID和UUID[]这种类型,在mybatis和这些类型交互的时候需要手动设置类型处理器才可以,这里记录一下类型处理器的设置 /*** UUID类型处理器*/ public class UUIDTypeHandler extends BaseTypeHandler<UUID> {/*** 获…...

vue3 高德地图标注(飞线,呼吸点)效果
装下这两个 npm 忘了具体命令了,百度一下就行 “loca”: “^1.0.1”, “amap/amap-jsapi-loader”: “^1.0.1”, <template><div id"map" style"width: 100%;height: 100%;"></div> </template><script setup> …...

程序员成长秘籍:是迈向管理巅峰,还是深耕技术架构?
专业在线打字练习平台-巧手打字通,只输出有价值的知识。 一 管理和架构 做技术的同学一般有两条职业发展路径,横向的管理路线和纵向的技术路线。管理路线对应的是管理岗,讲究的是排兵布阵,通过各种资源的优化配置发挥价值。技术路…...
xargs的参数及常用命令
1. xargs 命令简介 xargs 是一个非常有用的工具,它用于从标准输入(stdin)构建和执行命令行。xargs 可以将标准输入中以空格或换行符分隔的数据,转化为命令的参数传递给其他命令。 使用场景: 当某些命令不支持使用管…...
FLASK 数据库建立以及部署和表的创建
首先安装flask-sqlalchemy db SQLAlchemy(app) 一 Mmeber、User模型类的创建 # coding: utf-8 from app import db, appclass Member(db.Model):__tablename__ memberid db.Column(db.Integer, primary_keyTrue)membername db.Column(db.String(100), uniqueTrue, index…...
微信小程序的面试题
简述下 wx.navigateTo(), wx.redirectTo(), wx.switchTab(), wx.navigateBack(), wx.reLaunch() 区别 ? wx.navigateTo() : 保留当前页面,跳转到应用内的某个页面。但是不能跳到 tabbar 页面 wx.redirectTo() : 关闭当前页面,跳转到应用内的…...
udp c语言实现组播的例子
一、组播与广播的区别 1、组播地址和广播地址是不同的概念 组播地址:用于将数据包发送到一组特定的接收者,只有加入该组播地址的设备才能接收数据。它提高了网络效率,因为发送者只需发送一份数据。 广播地址:用于将数据包发送到…...
ffmpeg面向对象——AVInputFormat与URLProtocol啥关系
《ffmpeg面向对象-rtsp拉流相关对象》和《ffmpeg面向对象——拉流协议匹配机制探索》探索过了输入格式匹配和底层协议匹配,且ffmpeg拉流是先是匹配输入格式——抽象为AVInputFormat类,然后再匹配url协议类——抽象为URLProtocol类。 它们是啥关系&#…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...