Golang 逃逸分析(Escape Analysis)理解与实践篇
Golang 逃逸分析(Escape Analysis)理解与实践篇
文章目录
- 1.逃逸分析
- 2.相关知识(栈、堆、GC分析)
- 3.逃逸分析综合-实践 demo
逃逸分析(Escape Analysis)是编译器在编译期进行的一项优化技术,是Glang非常重要的性能优化工具。其目的是判断某个变量是否会被函数外部引用,或者超出其作用范围。
1.逃逸分析
如果变量仅在函数内部使用,那么它可以安全地分配在栈上;如果变量“逃逸”到函数外部(例如返回给调用者或者传递给其他协程),编译器会将其分配到堆上,以保证其生命周期不会在栈帧结束时被销毁。
1.返回指针:如果函数返回了局部变量的指针,该变量就会逃逸到堆上。
2.闭包捕获变量:闭包函数中捕获的外部变量也会导致变量逃逸。
3.接口类型的转换:接口转换时,如果具体类型需要被持久化存储,那么它可能逃逸。
4.动态分配的内存:例如使用 new 或者 make 创建的对象,编译器可能会决定将它们分配在堆上。
5.使用 Goroutine :需要特别注意变量逃逸问题。因为 Goroutine 会并发执行,某些变量可能在 Goroutine 中被引用,导致它们逃逸到堆上。
Golang 提供了逃逸分析的工具(编译时查看函数中哪些变量发生了逃逸):
go build -gcflags="-m"
2.相关知识(栈、堆、GC分析)
栈分配:栈是 Go 中快速分配和释放内存的区域。栈上的变量在函数返回时自动销毁,不需要额外的垃圾回收(GC)开销。
堆分配:堆上的内存分配速度相对较慢,且需要依赖 Go 的垃圾回收机制进行管理。频繁的堆分配会导致 GC 的频率增加,从而影响性能。
GC:Go 的垃圾回收器是三色标记清除算法,每次垃圾回收会对堆上的所有对象进行追踪和标记,回收不再使用的内存。
- 白色(待回收):白色的对象表示未被访问到的对象。在垃圾回收开始时,所有的对象最初都被标记为白色。最终,所有仍然是白色的对象将被认定为不可达的,并在清除阶段被回收。
- 灰色(待处理):灰色的对象表示已经被垃圾回收器访问到,但其引用的对象还没有完全处理。灰色对象需要进一步追踪其引用的对象。
- 黑色(已处理):黑色的对象表示已经被处理过,它的引用对象也已经被追踪,不会被再次检查。黑色对象是安全的,表示它们依然在使用,不会被回收。
启用 GC 配置:
export GOGC=50 # 设置 GOGC 为 50,增加 GC 频率,降低内存占用
export GODEBUG=gctrace=1 # GC 运行的详细信息,包括 GC 触发的时机、暂停时间、以及每次回收时清理的内存量
GC 测试 demo:
package mainimport ("fmt""runtime""time"
)func main() {// 启动一个 Goroutine,持续分配内存,触发 GCgo func() {for {_ = make([]byte, 10<<20) // 每次分配 10MB 内存time.Sleep(100 * time.Millisecond)}}()// 打印内存使用情况和 GC 次数var m runtime.MemStatsfor i := 0; i < 10; i++ {runtime.ReadMemStats(&m)fmt.Printf("Alloc = %v MiB, Sys = %v MiB, NumGC = %v\n", m.Alloc/1024/1024, m.Sys/1024/1024, m.NumGC)time.Sleep(1 * time.Second)}
}
3.逃逸分析综合-实践 demo
package mainimport ("fmt""runtime"
)// 示例1:返回局部变量的指针
func escapeToHeap() *int {a := 42return &a // 逃逸到堆上,因为返回了局部变量的指针
}// 示例2:闭包捕获外部变量
func closureExample() func() int {x := 100return func() int {return x // x 逃逸到堆上,闭包捕获了外部变量}
}// 示例3:接口转换导致逃逸
func interfaceExample() {var i interface{}i = 42 // 逃逸到堆上,因为 interface 可能会持有较大对象fmt.Println(i)
}// 示例4:动态分配内存
func dynamicAllocation() {p := new(int) // 逃逸到堆上,使用 new 分配内存*p = 42fmt.Println(*p)
}// 示例5:在栈上分配
func noEscape() {x := 42 // 没有逃逸,x 在栈上分配fmt.Println(x)
}// 示例6:Goroutine 中的逃逸分析
func goroutineEscape() {x := 42go func() {fmt.Println(x) // x 逃逸到堆上,因为被 Goroutine 使用}()
}func main() {// 打印当前内存使用情况var m runtime.MemStatsruntime.ReadMemStats(&m)fmt.Printf("Initial Alloc = %v KB\n", m.Alloc/1024)// 测试逃逸分析的各个示例fmt.Println("Running escapeToHeap()")escapeToHeap()fmt.Println("Running closureExample()")closure := closureExample()fmt.Println(closure())fmt.Println("Running interfaceExample()")interfaceExample()fmt.Println("Running dynamicAllocation()")dynamicAllocation()fmt.Println("Running noEscape()")noEscape()fmt.Println("Running goroutineEscape()")goroutineEscape()// 打印最终内存使用情况runtime.ReadMemStats(&m)fmt.Printf("Final Alloc = %v KB\n", m.Alloc/1024)
}
编译-逃逸分析
[jn@jn ~]$ go build -gcflags="-m" escape.go
# command-line-arguments
./escape.go:9:6: can inline escapeToHeap
./escape.go:15:6: can inline closureExample
./escape.go:17:9: can inline closureExample.func1
./escape.go:26:13: inlining call to fmt.Println
./escape.go:33:13: inlining call to fmt.Println
./escape.go:39:13: inlining call to fmt.Println
./escape.go:45:5: can inline goroutineEscape.func1
./escape.go:46:14: inlining call to fmt.Println
./escape.go:54:12: inlining call to fmt.Printf
./escape.go:57:13: inlining call to fmt.Println
./escape.go:58:14: inlining call to escapeToHeap
./escape.go:60:13: inlining call to fmt.Println
./escape.go:61:27: inlining call to closureExample
./escape.go:17:9: can inline main.func1
./escape.go:62:21: inlining call to main.func1
./escape.go:62:13: inlining call to fmt.Println
./escape.go:64:13: inlining call to fmt.Println
./escape.go:67:13: inlining call to fmt.Println
./escape.go:70:13: inlining call to fmt.Println
./escape.go:73:13: inlining call to fmt.Println
./escape.go:78:12: inlining call to fmt.Printf
./escape.go:10:2: moved to heap: a
./escape.go:17:9: func literal escapes to heap
./escape.go:25:2: 42 escapes to heap
./escape.go:26:13: ... argument does not escape
./escape.go:31:10: new(int) does not escape
./escape.go:33:13: ... argument does not escape
./escape.go:33:14: *p escapes to heap
./escape.go:39:13: ... argument does not escape
./escape.go:39:13: x escapes to heap
./escape.go:45:5: func literal escapes to heap
./escape.go:46:14: ... argument does not escape
./escape.go:46:14: x escapes to heap
./escape.go:54:12: ... argument does not escape
./escape.go:54:47: m.Alloc / 1024 escapes to heap
./escape.go:57:13: ... argument does not escape
./escape.go:57:14: "Running escapeToHeap()" escapes to heap
./escape.go:60:13: ... argument does not escape
./escape.go:60:14: "Running closureExample()" escapes to heap
./escape.go:61:27: func literal does not escape
./escape.go:62:13: ... argument does not escape
./escape.go:62:21: ~R0 escapes to heap
./escape.go:64:13: ... argument does not escape
./escape.go:64:14: "Running interfaceExample()" escapes to heap
./escape.go:67:13: ... argument does not escape
./escape.go:67:14: "Running dynamicAllocation()" escapes to heap
./escape.go:70:13: ... argument does not escape
./escape.go:70:14: "Running noEscape()" escapes to heap
./escape.go:73:13: ... argument does not escape
./escape.go:73:14: "Running goroutineEscape()" escapes to heap
./escape.go:78:12: ... argument does not escape
./escape.go:78:45: m.Alloc / 1024 escapes to heap
[jn@jn ~]$
run
[jn@jn ~]$ ./escape
Initial Alloc = 187 KB
Running escapeToHeap()
Running closureExample()
100
Running interfaceExample()
42
Running dynamicAllocation()
42
Running noEscape()
42
Running goroutineEscape()
Final Alloc = 190 KB
[jn@jn ~]$
end
1.尽量避免将局部变量的指针返回给外部。
2.使用闭包时注意外部变量的捕获,避免逃逸。
3.尽量减少接口类型和 Goroutine 导致的逃逸。
相关文章:
Golang 逃逸分析(Escape Analysis)理解与实践篇
Golang 逃逸分析(Escape Analysis)理解与实践篇 文章目录 1.逃逸分析2.相关知识(栈、堆、GC分析)3.逃逸分析综合-实践 demo 逃逸分析(Escape Analysis)是编译器在编译期进行的一项优化技术,是Gl…...

React入门 9:React Router
1. 什么是路由 路由(routing)就是通过互联的网络把信息从源地址传输到目的地址的活动。 以上是中文维基百科对路由的解释。通俗的来讲,把一个地方的信息传输到他想去的目的地的过程,就叫路由。 2. 用代码解释路由 需求:…...
MATLAB基础应用精讲-【数模应用】Bland-Altman图(附python和R语言代码实现)
目录 前言 几个高频面试题目 Bland-altman图:如何改变y轴 算法原理 Bland-Altman一致性分析 一致性界限 1. 背景介绍 2. Bland-Altman 法 3. batplot 命令介绍 4. 应用实例 Prism GraphPad实现Bland-Altman图 1.输入数据 2.从数据表中选择Bland-Altman分析 3.检…...
ARM/Linux嵌入式面经(四一):中兴面经
1. 请介绍一下您在嵌入式系统开发中的项目经验。 在嵌入式系统开发领域,我积累了丰富的项目经验,这些经验不仅锻炼了我的技术能力,也让我对嵌入式系统的设计和实现有了更深入的理解。以下是我参与的一个具有代表性的嵌入式系统开发项目的详细介绍: 项目背景 该项目是为一…...

鸿蒙虚拟运行环境
加一个环境变量:%SystemRoot%\System32\Wbem pushd "%~dp0" dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txt for /f %%i in (findstr /i . hyper-v.txt 2^>nul) do dism /online /norestart /add-package:"%SystemRoot%…...

SpringCloud-Consul
为什么引入 Consul 简介以及安装 控制台 localhost:8500 服务注册与发现 服务端 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-consul-discovery</artifactId><exclusions><exclusio…...
nginx搭建负载均衡
准备工作 两台虚拟机,或者本地启动两个相同应用,在不同的端口上安装好的nginx,在linux上两个版本的hexo,或者其他应用,方便观察是否进行了负载均衡 启动服务 在两台虚拟机上启动项目,这里以hexo为例 服务器…...

灵当CRM data/pdf.php 任意文件读取漏洞复现
0x01 产品简介 灵当CRM是一款专为中小企业打造的智能客户关系管理工具,由上海灵当信息科技有限公司开发并运营。广泛应用于金融、教育、医疗、IT服务、房地产等多个行业领域,帮助企业实现客户个性化管理需求,提升企业竞争力。无论是新客户开拓、老客户维护,还是销售过程管…...

Python 批量转换 Shapefile 为 GeoJSON
批量转换 Shapefile (.shp) 为 GeoJSON 文件的脚本详解 🗺️🔄 在地理信息系统(GIS)和遥感领域,Shapefile(.shp)格式与GeoJSON格式是两种常用的数据格式。Shapefile 作为矢量数据的标准格式之一…...

软考《信息系统运行管理员》- 4.1信息系统软件运维概述
4.1信息系统软件运维概述 文章目录 4.1信息系统软件运维概述信息系统软件运维的概念信息系统软件的可维护性及维护类型对软件可维护性的度量可以从以下几个方面进行:软件维护分类: 信息系统软件运维的体系1.**需求驱动**2.**运维流程**3.**运维过程**4.*…...
Leetcode 3319. K-th Largest Perfect Subtree Size in Binary Tree
Leetcode 3319. K-th Largest Perfect Subtree Size in Binary Tree 1. 解题思路2. 代码实现 题目链接:3319. K-th Largest Perfect Subtree Size in Binary Tree 1. 解题思路 这一题其实就是一个很常见的树的遍历,我们自底向上遍历每一个子树&#x…...

从秒级到小时级:TikTok等发布首篇面向长视频理解的多模态大语言模型全面综述
文章链接:https://arxiv.org/pdf/2409.18938 亮点直击 追踪并总结从图像理解到长视频理解的MM-LLMs的进展;回顾了各种视觉理解任务之间的差异,并强调了长视频理解中的挑战,包括更细粒度的时空细节、动态事件和长期依赖性;详细总结了MM-LLMs在…...
【CTF】敏感信息泄露 GIT SVN VIM
在CTF(Capture The Flag)比赛中,信息泄露是常见的考察方向之一。这类题目通过模拟开发人员的疏忽或系统配置的失误,导致敏感文件或数据被泄露。信息泄露题目通常相对简单,但能帮助参赛者掌握如何从公开的信息中获取潜在…...

EMQX服务器的搭建,实现本地机和虚拟机之间的MQTT通信(详细教程)
前言 MQTT是一个基于客户端-服务器的消息发布/订阅传输协议。MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛。 MQTT协议中有三种身份:发布者(Publish)、代理(Broker)(…...
cordova的使用
环境 Cordova 是一个跨平台的开发框架,它允许开发者使用 HTML、CSS 和 JavaScript 创建移动应用。Cordova 的不同版本可能会有不同的环境要求。以下是 Cordova 10 和 Cordova 12 在开发 Android 和 iOS 应用时的环境要求的对比总结。 1. Cordova 10 环境要求 And…...

三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨Transformer模型中三种关键的注意力机制:自注意力、交叉注意力和因果自注意力。这些机制是GPT-4、Llama等大型语言模型(LLMs)的核心组件。通过理解这些注意力机制,我们可以更好地把握这些模型的工作原理和应用潜力。 …...

《使用Gin框架构建分布式应用》阅读笔记:p20-p31
《用Gin框架构建分布式应用》学习第2天,p20-p31总结,总计12页。 一、技术总结 1.第一个gin程序 // main.go package mainimport "github.com/gin-gonic/gin"func main() {r : gin.Default()r.GET("/", func(c *gin.Context) {c.J…...
如何修改MacOS的终端的配色和linux一样
目录 一、配色方案 二、修改配色 一、配色方案 一键更改MacOS的终端配色文件,目的就是为了让他从原本的样子变成XShell里面显示的配色样式。文件夹为蓝色,链接文件为青色,可执行文件为绿色之类的。 linux默认配色方案是"exfxcxdxbxege…...

基于百度智能体开发爱情三十六计
基于百度智能体开发爱情三十六计 文章目录 基于百度智能体开发爱情三十六计1. 爱情三十六计智能体2. 三十六计开发创意3. 智能体开发实践3.1 基础配置3.2 进阶配置3.3 调优心得3.4可能会遇到的问题 4. 为什么选择文心智能体平台 1. 爱情三十六计智能体 爱情三十六计 是一款基于…...

计算机网络:计算机网络概述 —— 描述计算机网络的参数
文章目录 数据量性能指标速率带宽数据传输速率 吞吐量时延分析时延问题 时延带宽积往返时间利用率丢包率丢包的情况 抖动可用性可靠性安全性 计算机网络是现代信息社会的基础设施,其性能和可靠性对各类应用至关重要。为了理解和优化计算机网络,我们需要深…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...