当前位置: 首页 > news >正文

苹果最新论文:LLM只是复杂的模式匹配 而不是真正的逻辑推理

大语言模型真的可以推理吗?LLM 都是“参数匹配大师”?苹果研究员质疑 LLM 推理能力,称其“不堪一击”!苹果的研究员 Mehrdad Farajtabar 等人最近发表了一篇论文,对大型语言模型 (LLM) 的推理能力提出了尖锐的质疑,他认为,LLM 的“推理” 能力,其实只是复杂的模式匹配,不堪一击!

在这里插入图片描述
论文作者研究了包括 Llama、Phi、Gemma、Mistral 等开源模型,以及 GPT-4o 和 o1 系列等闭源模型。需要指出的是,在 OpenAI 发布 GSM8K 的三年里,模型的性能有了显著提升,从 GPT-3 (175B) 的 35% 提升到了现在 30 亿参数模型的 85% 以上,更大的模型甚至超过了 95%。但 Farajtabar 认为,这并不能证明 LLM 的推理能力真的提高了

在这里插入图片描述
为了测试 LLM 的数学推理能力的极限,Farajtabar 和他的团队开发了一个名为 GSM-Symbolic 的新工具,它可以根据 GSM8K 测试集创建符号模板,从而能够生成大量实例并设计可控实验。他们生成了 50 个独特的 GSM-Symbolic 集合,这些集合本质上就像 GSM8K 示例,但具有不同的值和名称

在这里插入图片描述
GSM8K 是 “Grade School Math 8K” 的缩写,是一个用来评估数学问题解决能力的数据集。这个数据集主要包含小学级别的数学题目(大约 8,000 道题目),通常用于训练和测试机器学习模型,特别是在自然语言处理领域的模型如何处理和解决数学问题

实验结果,令人大跌眼镜:

1.当前 GSM8K 的准确率并不可靠! 不同模型在 GSM8K 上的表现差异巨大,例如 Llama 8B 的得分在 70% 到 80% 之间,Phi-3 的得分在 75% 到 90% 之间,等等。对于大多数模型,在 GSM-Symbolic 上的平均性能低于在 GSM8K 上的平均性能

在这里插入图片描述
在这里插入图片描述
2.所谓的 LLM 推理能力不堪一击! LLM 对专有名词和数字的更改非常敏感,这说明它们并没有真正理解数学概念。就像一个小学生,如果我们只是更改了数学测试题中的人名,他的分数就会下降 10% 吗?显然不会

在这里插入图片描述
3.随着问题难度的增加 (M1 → Symbolic → P1 → P2)。引入了 GSM-Symbolic 的三个新变体来研究模型行为:删除一个分句(GSM-M1)、增加一个分句(GSM-P1)或增加两个分句(GSM-P2),模型的性能下降,方差上升, 这意味着模型的可靠性越来越差
在这里插入图片描述
4.引入 GSM-NoOp 后,模型性能断崖式下跌! GSM-NoOp 是在 GSM-Symbolic 的基础上,添加了一个看似相关但不影响整体推理的子句。所有模型,包括 o1 模型,都表现出了显著的性能下降。这说明,即使是强大的 o1 模型,也无法真正理解数学问题的逻辑结构

在这里插入图片描述
5.即使是 OpenAI 的 o1 系列模型,也无法完全避免这些问题。 o1-preview 虽然有所改进,但仍然会犯一些低级错误,例如无法理解“现在”和“去年”的区别,这可能是因为训练数据中包含了“通货膨胀”的模式,模型只是简单地模仿了这种模式

在这里插入图片描述
Farajtabar 认为,

LLM 的这些表现,更好地解释是复杂的模式匹配,而不是真正的逻辑推理。 即使我们增加数据、参数和计算量,或者使用更好的训练数据,也只是得到了“更好的模式匹配器”,而不是“更好的推理器”

Denny Zhou (Google DeepMind 的 LLM 推理团队负责人) 也参与了讨论,他指出:

“这项工作的一个关键发现是:向 GSM8k 问题添加不相关的上下文会导致 LLM 无法解决这些问题,正如我们在 ICML 2023 年的论文‘大型语言模型很容易被不相关的上下文分散注意力’ 中所证明的那样。提示构建的差异在我看来仍然很有趣。”

Yuandong Tian (Meta AI 的研究科学家总监) 也表达了他的观点:

“核心问题是:凭借我们的领域知识,我们可以构建权重,使 LLM 在特定问题中进行良好的推理;然而,梯度下降可能无法学习到这样的权重;我们仍然依赖梯度下降,因为它为许多领域带来了魔力——如果它在其他领域变得愚蠢,我们也无能为力。”

结论

总的来说,这篇论文研究结果没有在包括 Llama、Phi、Gemma 和 Mistral 等开源模型,以及最近的 OpenAI GPT-4o 和 o1 系列等领先闭源模型在内的语言模型中,找到任何形式推理的证据。他们的行为可以用复杂的模式匹配来更好地解释——如此脆弱,以至于更改名称都会使结果改变约 10%!我们可以扩展数据、参数和计算量——或者为 Phi-4、Llama-4、GPT-5 使用更好的训练数据。但这可能只会产生“更好的模式匹配器”,而不是“更好的推理器”

相关文章:

苹果最新论文:LLM只是复杂的模式匹配 而不是真正的逻辑推理

大语言模型真的可以推理吗?LLM 都是“参数匹配大师”?苹果研究员质疑 LLM 推理能力,称其“不堪一击”!苹果的研究员 Mehrdad Farajtabar 等人最近发表了一篇论文,对大型语言模型 (LLM) 的推理能…...

Python知识点:基于Python工具,如何使用Scikit-Image进行图像处理与分析

开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候! 基于Python的Scikit-Image图像处理与分析指南 在Python的科学计算生态系统中&am…...

MongoDB初学者入门教学:与MySQL的对比理解

🏝️ 博主介绍 大家好,我是一个搬砖的农民工,很高兴认识大家 😊 ~ 👨‍🎓 个人介绍:本人是一名后端Java开发工程师,坐标北京 ~ 🎉 感谢关注 📖 一起学习 &…...

Oracle AI Vector Search

Oracle AI Vector Search 是 Oracle Database 23ai 中引入的一项新技术,它允许用户在数据库中直接存储和高效查询向量数据。这项技术旨在简化应用程序的开发,并且支持不同维度和格式的向量。以下是 Oracle AI Vector Search 的一些关键特性和优势&#x…...

基于SpringBoot的健身会员管理系统实战分享

在这个充满活力的时代,我们自豪地呈现一款专为健身爱好者和专业人士设计的会员管理系统——一个集创新、效率与便捷于一体的解决方案。我们的系统基于强大的RuoYi-Vue框架构建,采用最新的Spring Boot和Vue3技术,确保了系统的高性能和用户友好…...

Elasticsearch高级搜索技术-结构化数据搜索

目录 结构化数据的存储 示例映射 使用range查询 查询示例 运算符 更多示例 日期查询 示例 结构化数据搜索是Elasticsearch另一个强大的功能,允许用户对具有明确类型的数据(如数字、日期和布尔值)进行精确的过滤和查询。这种类型的搜索通常涉及…...

ffmpeg面向对象——类所属的方法探索

ffmpeg是面向对象的思想写的代码,自然符合oopc的实现套路。这个也是oopc的通用法则。 1.类所属方法oopc的实现形式 ffmpeg抽象出某一类,然后某一类的方法如何调用?你说这还不简单: 对象.对象方法() 或者 对象指针-&g…...

TensorRT-LLM七日谈 Day3

今天主要是结合理论进一步熟悉TensorRT-LLM的内容 从下面的分享可以看出,TensorRT-LLM是在TensorRT的基础上进行了进一步封装,提供拼batch,量化等推理加速实现方式。 下面的图片更好的展示了TensorRT-LLM的流程,包含权重转换&…...

如何使用Pandas库处理大型数据集?

如何使用Pandas库处理大型数据集? 处理大型数据集是数据分析中的一个挑战,尤其是在资源有限的情况下。Pandas是Python中非常流行的数据处理库,但它在处理非常大的数据集时可能会遇到内存限制的问题。因此,我们需要一些策略来提高Pandas处理大型数据集的效率。以下是使用Pa…...

XHR 创建对象

XHR 创建对象 XMLHttpRequest(XHR)是现代Web开发中不可或缺的技术之一。它允许Web开发者通过JavaScript发送网络请求,以在不重新加载整个页面的情况下更新网页的某部分。XHR为开发者提供了一种在客户端和服务器之间传输数据的有效方式,是AJAX(Asynchronous JavaScript an…...

# 在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 分析

在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 分析 一、问题描述: 在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 如下图: 二、报错分析&…...

C++的类和动态内存分配(深拷贝与浅拷贝)并实现自己的string类

首先&#xff0c;我们先写一个并不完美的类&#xff1a; #include<iostream> #include<cstring> using namespace std;class Mystring{private:char *p;int len;static int num;friend ostream& operator<<(ostream& os, const Mystring& c);pu…...

通过观测云 DataKit Extension 接入 AWS Lambda 最佳实践

前言 AWS Lambda 是一项计算服务&#xff0c;使用时无需预配置或管理服务器即可运行代码。AWS Lambda 只在需要时执行代码并自动缩放。借助 AWS Lambda&#xff0c;几乎可以为任何类型的应用程序或后端服务运行代码&#xff0c;而且无需执行任何管理。 Lambda Layer 是一个包…...

MySQL-三范式 视图

文章目录 三范式三范式简介第一范式第二范式第三范式 表设计一对一一对多多对多最终的设计 视图 三范式 三范式简介 所谓三范式, 其实是表设计的三大原则, 目的都是为了节省空间, 但是三范式是必须要遵守的吗? 答案是否定的(但是第一范式必须遵守) 因为有时候严格遵守三范式…...

多线程(三):线程等待获取线程引用线程休眠线程状态

目录 1、等待一个线程&#xff1a;join 1.1 join() 1.2 join(long millis)——"超时时间" 1.3 join(long millis&#xff0c;int nanos) 2、获取当前线程的引用&#xff1a;currentThread 3、休眠当前进程&#xff1a;sleep 3.1 实际休眠时间 3.2 sleep的特殊…...

Hi3244 应用指导

Hi3244 是一款DIP8封装高性能、多模式工作的原边控制功率开关。Hi3244内高精度的恒流、恒压控制机制结合完备的保护功能&#xff0c;使其适用于小功率离线式电源应用中。在恒压输出模式中&#xff0c;Hi3244 采用多模式工作方式&#xff0c;即调幅控制&#xff08;AM&#xff0…...

【LeetCode热题100】哈希

1.两数之和 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案&#xff0c;并且你不能使用两次相同的元素。 你可以按任意顺序返回答…...

Java的四种循环语句

背景&#xff1a; Java 中主要有四种循环语句&#xff1a;for 循环、while 循环、do-while 循环 和 foreach 循环&#xff08;也称为增强型 for 循环&#xff09;。下面我将分别介绍这四种循环语句&#xff0c;并给出相应的实例。 for循环&#xff1a; 1. for 循环for 循环是…...

Qt杂记目录

Qt 杂记目录 QMenu 1.menu转string Qt 窗口阴影边框...

项目开发--基于docker实现模型容器化服务

背景 1、docker-compose build 和 docker-compose up -d分别是什么作用&#xff1f; 2、如何进入新构建的容器当中 3、模型保存的方法区别 4、如何让docker容器启动的时候能使用cuda进行模型推理加速 5、如何实现容器的迭代 解决方案 问题1 docker-compose build 和 docker…...

C语言 | Leetcode C语言题解之第477题汉明距离总和

题目&#xff1a; 题解&#xff1a; int totalHammingDistance(int* nums, int numsSize) {int ans 0;for (int i 0; i < 30; i) {int c 0;for (int j 0; j < numsSize; j) {c (nums[j] >> i) & 1;}ans c * (numsSize - c);}return ans; }...

Bug剖析

Bug剖析 • 所有的Bug报告有以下的基本要求&#xff1a; • 标题。要简略。 • 指派。谁来处理这个问题。 • 重现步骤。问题再次出现的相关步骤。 • 优先级别。问题的紧迫性与重要性。 • 严重程度。问题所产生的后果。 • 解决方案。怎么解决问题。 其他很多方面对修复问题…...

HI3516DV500 相机部分架构初探

Hi3516DV500 是一颗面向视觉行业推出的高清智能 Soc。该芯片最高支持 2 路 sensor 输入&#xff0c;支持最高 5M30fps 的 ISP 图像处理能力&#xff0c;支持 2F WDR、多级降噪、六轴防 抖、多光谱融合等多种传统图像增强和处理算法&#xff0c;支持通过 AI 算法对输入图像进行实…...

训练yolo系列出现问题mAP, R, P等为零

1. 问题 40系列显卡训练yolo系列出现问题&#xff0c;loss正常&#xff0c;但mAP&#xff0c;R&#xff0c;P等为零。 环境&#xff1a;ultralytics版本为8.3.9&#xff0c;cuda11.8&#xff0c; torch2.4。 40系列显卡网上说可以使用cuda低于11.7的&#xff0c;自己测试了下…...

数字媒体技术基础:色度子采样(4:4:4、4:2:2 、4:2:0)

在数字视频处理中&#xff0c;色度子采样 Chroma Subsampling可以用于压缩视频文件的大小&#xff0c;同时在大多数情况下保持较高的视觉质量&#xff0c;它的原理基于人类视觉系统对亮度 Luminance比对色度 Chrominance更加敏感这一特点。 一、 采样格式的表示方法 色度子采样…...

tkinter库的应用小示例:文本编辑器

tkinter库的应用小示例&#xff1a;文本编辑器 要 求&#xff1a; 创建一个文本编辑器&#xff0c;功能包括&#xff0c;创建、打开、编辑、保存文件。一个Button小组件&#xff0c;命名为btn_open,用于打开要编辑的文件&#xff0c;一个Button小组件&#xff0c;命名为btn_s…...

信息抽取数据集处理——RAMS

引言 RAMS数据集&#xff08;RAMS&#xff1a;Richly Annotated Multilingual Schema-guided Event Structure&#xff09;由约翰斯霍普金斯大学于2020年发布&#xff0c;是一个以新闻为基础的事件抽取数据集。它标注了9,124个事件&#xff0c;涵盖了139种不同的事件类型和65种…...

SpringBoot+XXL-JOB:高效定时任务管理

前言 在现代应用程序中&#xff0c;定时任务是不可或缺的一部分。Spring Boot 和 XXL-Job 为你提供了一个强大的工具组合&#xff0c;以简化任务调度和管理。 本文将带领你探索如何将这两者集成在一起&#xff0c;实现高效的定时任务管理。无论你是初学者还是有经验的开发者&…...

openpyxl -- 简介

文章目录 介绍核心类 介绍 开源的python读写Excel的工具库&#xff0c;由志愿者在业余时间维护&#xff1b;安装&#xff0c;pip install openpyxl;官方文档地址源码地址issues列表默认openpyxl不能保证抵御大量的xml攻击&#xff0c;为抵御这些攻击需安装defusedxml&#xff…...

滚雪球学MySQL[8.3讲]:数据库中的JSON与全文检索详解:从数据存储到全文索引的高效使用

全文目录&#xff1a; 前言8.3 JSON与全文检索1. JSON数据类型的使用1.1 JSON 数据类型概述1.2 JSON 数据的插入与查询1.3 JSON 常用函数与操作1.4 JSON使用的优缺点与性能考虑 2. 全文索引与全文检索2.1 全文索引概述2.2 全文检索的使用2.3 全文检索模式2.4 全文索引优化与性能…...