苹果最新论文:LLM只是复杂的模式匹配 而不是真正的逻辑推理
大语言模型真的可以推理吗?LLM 都是“参数匹配大师”?苹果研究员质疑 LLM 推理能力,称其“不堪一击”!苹果的研究员 Mehrdad Farajtabar 等人最近发表了一篇论文,对大型语言模型 (LLM) 的推理能力提出了尖锐的质疑,他认为,LLM 的“推理” 能力,其实只是复杂的模式匹配,不堪一击!
论文作者研究了包括 Llama、Phi、Gemma、Mistral 等开源模型,以及 GPT-4o 和 o1 系列等闭源模型。需要指出的是,在 OpenAI 发布 GSM8K 的三年里,模型的性能有了显著提升,从 GPT-3 (175B) 的 35% 提升到了现在 30 亿参数模型的 85% 以上,更大的模型甚至超过了 95%。但 Farajtabar 认为,这并不能证明 LLM 的推理能力真的提高了
为了测试 LLM 的数学推理能力的极限,Farajtabar 和他的团队开发了一个名为 GSM-Symbolic 的新工具,它可以根据 GSM8K 测试集创建符号模板,从而能够生成大量实例并设计可控实验。他们生成了 50 个独特的 GSM-Symbolic 集合,这些集合本质上就像 GSM8K 示例,但具有不同的值和名称
GSM8K 是 “Grade School Math 8K” 的缩写,是一个用来评估数学问题解决能力的数据集。这个数据集主要包含小学级别的数学题目(大约 8,000 道题目),通常用于训练和测试机器学习模型,特别是在自然语言处理领域的模型如何处理和解决数学问题
实验结果,令人大跌眼镜:
1.当前 GSM8K 的准确率并不可靠! 不同模型在 GSM8K 上的表现差异巨大,例如 Llama 8B 的得分在 70% 到 80% 之间,Phi-3 的得分在 75% 到 90% 之间,等等。对于大多数模型,在 GSM-Symbolic 上的平均性能低于在 GSM8K 上的平均性能
2.所谓的 LLM 推理能力不堪一击! LLM 对专有名词和数字的更改非常敏感,这说明它们并没有真正理解数学概念。就像一个小学生,如果我们只是更改了数学测试题中的人名,他的分数就会下降 10% 吗?显然不会
3.随着问题难度的增加 (M1 → Symbolic → P1 → P2)。引入了 GSM-Symbolic 的三个新变体来研究模型行为:删除一个分句(GSM-M1)、增加一个分句(GSM-P1)或增加两个分句(GSM-P2),模型的性能下降,方差上升, 这意味着模型的可靠性越来越差
4.引入 GSM-NoOp 后,模型性能断崖式下跌! GSM-NoOp 是在 GSM-Symbolic 的基础上,添加了一个看似相关但不影响整体推理的子句。所有模型,包括 o1 模型,都表现出了显著的性能下降。这说明,即使是强大的 o1 模型,也无法真正理解数学问题的逻辑结构
5.即使是 OpenAI 的 o1 系列模型,也无法完全避免这些问题。 o1-preview 虽然有所改进,但仍然会犯一些低级错误,例如无法理解“现在”和“去年”的区别,这可能是因为训练数据中包含了“通货膨胀”的模式,模型只是简单地模仿了这种模式
Farajtabar 认为,
LLM 的这些表现,更好地解释是复杂的模式匹配,而不是真正的逻辑推理。 即使我们增加数据、参数和计算量,或者使用更好的训练数据,也只是得到了“更好的模式匹配器”,而不是“更好的推理器”
Denny Zhou (Google DeepMind 的 LLM 推理团队负责人) 也参与了讨论,他指出:
“这项工作的一个关键发现是:向 GSM8k 问题添加不相关的上下文会导致 LLM 无法解决这些问题,正如我们在 ICML 2023 年的论文‘大型语言模型很容易被不相关的上下文分散注意力’ 中所证明的那样。提示构建的差异在我看来仍然很有趣。”
Yuandong Tian (Meta AI 的研究科学家总监) 也表达了他的观点:
“核心问题是:凭借我们的领域知识,我们可以构建权重,使 LLM 在特定问题中进行良好的推理;然而,梯度下降可能无法学习到这样的权重;我们仍然依赖梯度下降,因为它为许多领域带来了魔力——如果它在其他领域变得愚蠢,我们也无能为力。”
结论
总的来说,这篇论文研究结果没有在包括 Llama、Phi、Gemma 和 Mistral 等开源模型,以及最近的 OpenAI GPT-4o 和 o1 系列等领先闭源模型在内的语言模型中,找到任何形式推理的证据。他们的行为可以用复杂的模式匹配来更好地解释——如此脆弱,以至于更改名称都会使结果改变约 10%!我们可以扩展数据、参数和计算量——或者为 Phi-4、Llama-4、GPT-5 使用更好的训练数据。但这可能只会产生“更好的模式匹配器”,而不是“更好的推理器”
相关文章:

苹果最新论文:LLM只是复杂的模式匹配 而不是真正的逻辑推理
大语言模型真的可以推理吗?LLM 都是“参数匹配大师”?苹果研究员质疑 LLM 推理能力,称其“不堪一击”!苹果的研究员 Mehrdad Farajtabar 等人最近发表了一篇论文,对大型语言模型 (LLM) 的推理能…...
Python知识点:基于Python工具,如何使用Scikit-Image进行图像处理与分析
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候! 基于Python的Scikit-Image图像处理与分析指南 在Python的科学计算生态系统中&am…...

MongoDB初学者入门教学:与MySQL的对比理解
🏝️ 博主介绍 大家好,我是一个搬砖的农民工,很高兴认识大家 😊 ~ 👨🎓 个人介绍:本人是一名后端Java开发工程师,坐标北京 ~ 🎉 感谢关注 📖 一起学习 &…...
Oracle AI Vector Search
Oracle AI Vector Search 是 Oracle Database 23ai 中引入的一项新技术,它允许用户在数据库中直接存储和高效查询向量数据。这项技术旨在简化应用程序的开发,并且支持不同维度和格式的向量。以下是 Oracle AI Vector Search 的一些关键特性和优势&#x…...

基于SpringBoot的健身会员管理系统实战分享
在这个充满活力的时代,我们自豪地呈现一款专为健身爱好者和专业人士设计的会员管理系统——一个集创新、效率与便捷于一体的解决方案。我们的系统基于强大的RuoYi-Vue框架构建,采用最新的Spring Boot和Vue3技术,确保了系统的高性能和用户友好…...
Elasticsearch高级搜索技术-结构化数据搜索
目录 结构化数据的存储 示例映射 使用range查询 查询示例 运算符 更多示例 日期查询 示例 结构化数据搜索是Elasticsearch另一个强大的功能,允许用户对具有明确类型的数据(如数字、日期和布尔值)进行精确的过滤和查询。这种类型的搜索通常涉及…...
ffmpeg面向对象——类所属的方法探索
ffmpeg是面向对象的思想写的代码,自然符合oopc的实现套路。这个也是oopc的通用法则。 1.类所属方法oopc的实现形式 ffmpeg抽象出某一类,然后某一类的方法如何调用?你说这还不简单: 对象.对象方法() 或者 对象指针-&g…...

TensorRT-LLM七日谈 Day3
今天主要是结合理论进一步熟悉TensorRT-LLM的内容 从下面的分享可以看出,TensorRT-LLM是在TensorRT的基础上进行了进一步封装,提供拼batch,量化等推理加速实现方式。 下面的图片更好的展示了TensorRT-LLM的流程,包含权重转换&…...
如何使用Pandas库处理大型数据集?
如何使用Pandas库处理大型数据集? 处理大型数据集是数据分析中的一个挑战,尤其是在资源有限的情况下。Pandas是Python中非常流行的数据处理库,但它在处理非常大的数据集时可能会遇到内存限制的问题。因此,我们需要一些策略来提高Pandas处理大型数据集的效率。以下是使用Pa…...
XHR 创建对象
XHR 创建对象 XMLHttpRequest(XHR)是现代Web开发中不可或缺的技术之一。它允许Web开发者通过JavaScript发送网络请求,以在不重新加载整个页面的情况下更新网页的某部分。XHR为开发者提供了一种在客户端和服务器之间传输数据的有效方式,是AJAX(Asynchronous JavaScript an…...

# 在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 分析
在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 分析 一、问题描述: 在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 如下图: 二、报错分析&…...

C++的类和动态内存分配(深拷贝与浅拷贝)并实现自己的string类
首先,我们先写一个并不完美的类: #include<iostream> #include<cstring> using namespace std;class Mystring{private:char *p;int len;static int num;friend ostream& operator<<(ostream& os, const Mystring& c);pu…...

通过观测云 DataKit Extension 接入 AWS Lambda 最佳实践
前言 AWS Lambda 是一项计算服务,使用时无需预配置或管理服务器即可运行代码。AWS Lambda 只在需要时执行代码并自动缩放。借助 AWS Lambda,几乎可以为任何类型的应用程序或后端服务运行代码,而且无需执行任何管理。 Lambda Layer 是一个包…...

MySQL-三范式 视图
文章目录 三范式三范式简介第一范式第二范式第三范式 表设计一对一一对多多对多最终的设计 视图 三范式 三范式简介 所谓三范式, 其实是表设计的三大原则, 目的都是为了节省空间, 但是三范式是必须要遵守的吗? 答案是否定的(但是第一范式必须遵守) 因为有时候严格遵守三范式…...

多线程(三):线程等待获取线程引用线程休眠线程状态
目录 1、等待一个线程:join 1.1 join() 1.2 join(long millis)——"超时时间" 1.3 join(long millis,int nanos) 2、获取当前线程的引用:currentThread 3、休眠当前进程:sleep 3.1 实际休眠时间 3.2 sleep的特殊…...

Hi3244 应用指导
Hi3244 是一款DIP8封装高性能、多模式工作的原边控制功率开关。Hi3244内高精度的恒流、恒压控制机制结合完备的保护功能,使其适用于小功率离线式电源应用中。在恒压输出模式中,Hi3244 采用多模式工作方式,即调幅控制(AM࿰…...
【LeetCode热题100】哈希
1.两数之和 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。 你可以按任意顺序返回答…...
Java的四种循环语句
背景: Java 中主要有四种循环语句:for 循环、while 循环、do-while 循环 和 foreach 循环(也称为增强型 for 循环)。下面我将分别介绍这四种循环语句,并给出相应的实例。 for循环: 1. for 循环for 循环是…...
Qt杂记目录
Qt 杂记目录 QMenu 1.menu转string Qt 窗口阴影边框...
项目开发--基于docker实现模型容器化服务
背景 1、docker-compose build 和 docker-compose up -d分别是什么作用? 2、如何进入新构建的容器当中 3、模型保存的方法区别 4、如何让docker容器启动的时候能使用cuda进行模型推理加速 5、如何实现容器的迭代 解决方案 问题1 docker-compose build 和 docker…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...