当前位置: 首页 > news >正文

【新书】使用 OpenAI API 构建 AI 应用:利用 ChatGPT等构建 10 个 AI 项目(第二版),404页pdf

通过构建 ChatGPT 克隆、代码错误修复器、测验生成器、翻译应用、自动回复邮件生成器、PowerPoint 生成器等项目,提升您的应用开发技能。

关键特性

  • 通过掌握 ChatGPT 概念(包括微调和集成),转变为 AI 开发专家

  • 通过涵盖广泛 AI 应用的实际项目获得实践经验

  • 通过将 ChatGPT API 与 Stripe 集成,实现应用支付系统

  • 购买纸质版或 Kindle 版还可免费获得 PDF 电子书

书籍简介
通过本书,您将学习如何利用 ChatGPT 在应用程序中实现 AI 的潜力。本实用指南将带您无缝集成 OpenAI API 到项目中,帮助您轻松驾驭复杂的 API 并确保应用程序的流畅运行。

本次新版内容涵盖了 OpenAI Embeddings 等关键主题,帮助您理解词汇和短语之间的语义关系。您将通过 10 个 AI 项目了解如何使用 ChatGPT、Whisper 和 DALL-E API,使用最新的 OpenAI 模型(GPT-3.5 和 GPT-4)以及 Visual Studio Code 作为开发环境。项目中将集成 ChatGPT 到 Flask、Django、Microsoft Office API 和 PyQt 等框架和工具中。您将掌握 NLP 任务,构建 ChatGPT 克隆,创建 AI 代码错误修复 SaaS 应用程序,并通过整合 Stripe 支付系统,为应用添加支付功能。

通过本书,您将能够开发、部署并通过 ChatGPT API 实现您的创新应用。

您将学到的内容

  • 建立使用 OpenAI API 进行 NLP 任务的扎实基础

  • 构建、部署并集成支付功能到各种桌面和 SaaS AI 应用程序中

  • 将 ChatGPT 集成到 Flask、Django 和 Microsoft Office API 等框架中

  • 借助 DALL-E API 在桌面应用中生成令人惊叹的 AI 艺术

  • 体验 Whisper API 的语音识别和文本转语音功能

  • 学习如何针对您的特定使用案例微调 ChatGPT 模型

  • 掌握 AI Embeddings 技术,衡量文本字符串之间的关联性

本书适合人群
本书适合各类专业人士,包括程序员、企业家和软件爱好者。初学者 Python 开发者、希望探索 ChatGPT 应用的 AI 开发人员、将 AI 技术集成到软件中的开发人员、以及使用 ChatGPT 构建 AI 驱动 Web 应用的 Web 开发人员都将从中受益。对于正在利用 ChatGPT 进行 AI 项目的学者和研究人员也将有所帮助。理解本书的内容需要具备基本的 Python 知识并熟悉 API。

目录

  • 使用 ChatGPT API 开始 NLP 任务

  • 构建 ChatGPT 克隆

  • 使用 Flask 创建并部署代码错误修复应用

  • 将代码错误修复应用与支付服务集成

  • 使用 ChatGPT 和 Django 构建测验生成应用

  • 通过 ChatGPT API 和 Microsoft Word 构建桌面翻译应用

  • 构建 Outlook 邮件回复生成器

  • 使用 PyQt 和 ChatGPT API 构建论文生成工具

  • 集成 ChatGPT 和 DALL-E API:构建端到端 PowerPoint 演示文稿生成器

  • 使用 Whisper API 实现语音识别和文本转语音功能

  • 选择合适的 ChatGPT API 模型

  • 微调 ChatGPT,创建独特的 API 模型

关于作者
马丁·雅涅夫(Martin Yanev)是一位成就卓越的软件工程师,拥有丰富的跨行业经验,包括航空航天和医疗技术领域。凭借超过八年的辉煌职业生涯,马丁在空中交通控制和色谱系统等关键领域开发和集成尖端软件解决方案方面形成了独特的专业知识。他在费奇堡州立大学(Fitchburg State University)担任计算机科学教授,教授超过 28 万名全球学生,展现了其卓越的教学才能。他在 Flask、Django、pytest 和 TensorFlow 等框架上具有深厚造诣,并熟练掌握 OpenAI API 的构建、训练和微调。马丁拥有航空系统和软件工程双硕士学位,这一显赫的学术成就体现了他对行业理论和实践的坚持与专注。凭借卓越的成就和多样的技能,马丁不断推动创新,在软件工程领域取得变革性进展。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

相关文章:

【新书】使用 OpenAI API 构建 AI 应用:利用 ChatGPT等构建 10 个 AI 项目(第二版),404页pdf

通过构建 ChatGPT 克隆、代码错误修复器、测验生成器、翻译应用、自动回复邮件生成器、PowerPoint 生成器等项目,提升您的应用开发技能。 关键特性 通过掌握 ChatGPT 概念(包括微调和集成),转变为 AI 开发专家 通过涵盖广泛 AI …...

修改PostgreSQL表中的字段排列顺序

二、通过修改系统表(pg_attribute)达到字段重新排序的目的有关系统表的概述及用途可以查看官网:http://www.pgsqldb.org/pgsqldoc-cvs/catalogs.html 表名字表用途pg_class表,索引,序列,视图(”关系”)pg_…...

canvas实现手写功能

1.从接口获取手写内容&#xff0c;处理成由单个字组成的数组&#xff08;包括符号&#xff09; 2.合成所有图的时候&#xff0c;会闪现outputCanvas合成的图&#xff0c;注意隐藏 3.可以进行多个手写内容切换 4.基于uniapp的 <template><view class"content&quo…...

Python知识点:基于Python技术,如何使用TensorFlow进行目标检测

开篇&#xff0c;先说一个好消息&#xff0c;截止到2025年1月1日前&#xff0c;翻到文末找到我&#xff0c;赠送定制版的开题报告和任务书&#xff0c;先到先得&#xff01;过期不候&#xff01; 使用TensorFlow进行目标检测的完整指南 目标检测是计算机视觉领域中的一项重要任…...

初始爬虫13(js逆向)

为了解决网页端的动态加载&#xff0c;加密设置等&#xff0c;所以需要js逆向操作。 JavaScript逆向可以分为三大部分&#xff1a;寻找入口&#xff0c;调试分析和模拟执行。 1.chrome在爬虫中的作用 1.1preserve log的使用 默认情况下&#xff0c;页面发生跳转之后&#xf…...

前端发送了请求头的参数,经debug发现后端请求对象请求头中没有该参数

debug测试&#xff0c;发现前端发来请求头中确实没有找到添加的请求头参数&#xff0c;但是 Network 中却显示请求头中有该参数信息。 原因是RequestHeaders中设置的请求参数含有下划线&#xff0c;NGINX将静默地丢弃带有下划线的HTTP标头&#xff0c;这样做是为了防止在将头映…...

雷池社区版如何使用静态资源的方式建立站点

介绍&#xff1a; SafeLine&#xff0c;中文名 “雷池”&#xff0c;是一款简单好用, 效果突出的 Web 应用防火墙(WAF)&#xff0c;可以保护 Web 服务不受黑客攻击。 雷池通过过滤和监控 Web 应用与互联网之间的 HTTP 流量来保护 Web 服务。可以保护 Web 服务免受 SQL 注入、X…...

车载电源OBC+DC/DC

文章目录 1. 车载DC/DC应用场景2. PFC2.1 简介2.2 专业名词2.3 常见拓扑结构2.3.1 传统桥式PFC2.3.2 普通无桥型PFC2.3.3 双Boost无桥PFC2.3.4 图腾柱PFC2.3.5 参考资料 2.4 功率因数2.4.1 简介2.4.2 计算 3. DC/DC3.1 Boost升压电路3.1.1 简介3.1.2 电路框图3.1.3 工作原理3.1…...

【朝花夕拾】免费个人网页搭建:免费托管、CDN加速、个人域名、现代化网页模板一网打尽

现代化网页设计的免费宝藏&#xff1a;GitHub PagesCodePenCloudflareUS.KG 前言 在当今数字化时代&#xff0c;个人和企业越来越重视在线形象的建立。GitHub Pages 提供了一个免费且便捷的平台&#xff0c;允许用户托管静态网站。然而&#xff0c;GitHub Pages 默认的域名可…...

Spring Boot知识管理系统:用户体验设计

6系统测试 6.1概念和意义 测试的定义&#xff1a;程序测试是为了发现错误而执行程序的过程。测试(Testing)的任务与目的可以描述为&#xff1a; 目的&#xff1a;发现程序的错误&#xff1b; 任务&#xff1a;通过在计算机上执行程序&#xff0c;暴露程序中潜在的错误。 另一个…...

《数字信号处理》学习08-围线积分法(留数法)计算z 逆变换

目录 一&#xff0c;z逆变换相关概念 二&#xff0c;留数定理相关概念 三&#xff0c;习题 一&#xff0c;z逆变换相关概念 接下来开始学习z变换的反变换-z逆变换&#xff08;z反变化&#xff09;。 由象函数 求它的原序列 的过程就称为 逆变换。即 。 求z逆变换…...

vue3中的computed属性

模板界面&#xff1a; <template><div class"person"><h2>姓&#xff1a; <input type"text" v-model"person.firstName" /></h2><h2>名&#xff1a; <input type"text" v-model"person…...

C++学习笔记之vector容器

天上月&#xff0c;人间月&#xff0c;负笈求学肩上月&#xff0c;登高凭栏眼中月&#xff0c;竹篮打水碎又圆。 山间风&#xff0c;水边风&#xff0c;御剑远游脚下风&#xff0c;圣贤书斋翻书风&#xff0c;风吹浮萍又相逢。 STL(Standard Template Library,标准模板库 ) 从…...

LeNet-5(论文复现)

LeNet-5&#xff08;论文复现&#xff09; 本文所涉及所有资源均在传知代码平台可获取 文章目录 LeNet-5&#xff08;论文复现&#xff09;概述LeNet-5网络架构介绍训练过程测试过程使用方式说明 概述 LeNet是最早的卷积神经网络之一。1998年&#xff0c;Yann LeCun第一次将LeN…...

基于SpringBoot+Vue+Uniapp汽车保养系统小程序的设计与实现

详细视频演示 请联系我获取更详细的演示视频 项目运行截图 技术框架 后端采用SpringBoot框架 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的开源框架。它采用约定大于配置的理念&#xff0c;提供了一套默认的配置&#xff0c;让开发者可以更专注于业务逻辑而…...

【问题实战】Jmeter中jtl格式转换图片后如何分开展示各个性能指标?

【问题实战】Jmeter中jtl格式转换图片后如何分开展示各个性能指标&#xff1f; 遇到的问题解决方法查看修改效果 遇到的问题 JMeter测试计划中只设置了一个性能监控器jpgc - PerfMon Metrics Collector&#xff1b;在这个监控器中设置几个性能监控指标&#xff0c;比如CPU、Di…...

解决 MySQL 连接数过多导致的 SQLNonTransientConnectionException 问题

这里写目录标题 解决 MySQL 连接数过多导致的 SQLNonTransientConnectionException 问题1. 概述2. 问题描述异常日志的关键部分&#xff1a; 3. 原因分析3.1. MySQL 连接数配置3.2. 连接池配置问题3.3. 代码中未正确关闭连接3.4. 高并发导致连接需求激增 4. 解决方案4.1. 增加 …...

猫头虎分享:什么是 ChatGPT 4o Canvas?

猫头虎是谁&#xff1f; 大家好&#xff0c;我是 猫头虎&#xff0c;猫头虎技术团队创始人&#xff0c;也被大家称为猫哥。我目前是COC北京城市开发者社区主理人、COC西安城市开发者社区主理人&#xff0c;以及云原生开发者社区主理人&#xff0c;在多个技术领域如云原生、前端…...

qiankun 主项目和子项目都是 vue2,部署在同一台服务器上,nginx 配置

1、主项目配置 1.1 micro.vue 组件 <template><div id"container-sub-app"></div> </template><script> import { loadMicroApp } from qiankun; import actions from /utils/actions.js;export default {name: microApp,mixins: [ac…...

深入浅出MongoDB(七)

深入浅出MongoDB&#xff08;七&#xff09; 文章目录 深入浅出MongoDB&#xff08;七&#xff09;查询优化创建索引以支持读取操作查询选择性覆盖查询 分析性能使用数据库分析器评估对数据库的操作使用db.currentOp()评估mongod操作使用explain评估查询性能 优化查询性能创建索…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...