当前位置: 首页 > news >正文

大语言模型与ChatGPT:深入探索与应用

文章目录

  • 1. 前言
  • 2. 大语言模型的概述
    • 2.1 什么是大语言模型?
    • 2.2 Transformer架构的核心
    • 2.3 预训练与微调
  • 3. ChatGPT的架构与技术背景
    • 3.1 GPT模型的演进
    • 3.2 ChatGPT的工作原理
  • 4. ChatGPT的实际应用
    • 4.1 日常对话助手
    • 4.2 内容生成与写作
    • 4.3 编程辅助
    • 4.4 教育与学习辅助
    • 4.5 客户服务与支持
  • 5. ChatGPT的挑战与局限性
    • 5.1 数据偏差与生成不准确信息
    • 5.2 隐私与安全问题
    • 5.3 算力与成本
  • 6. 未来展望
    • 6.1 多模态学习的发展
    • 6.2 个性化与情感理解
    • 6.3 可解释性与透明度
  • 7. 结论
  • 8. 深度分析:大语言模型在实际应用中的挑战与解决方案
    • 8.1 事实准确性问题
    • 8.2 偏见与伦理问题
    • 8.3 可解释性问题
    • 8.4 计算资源与成本问题
  • 9. ChatGPT在不同行业中的应用实例
    • 9.1 医疗行业
    • 9.2 法律行业
    • 9.3 教育行业
    • 9.4 客户服务与电商
  • 10. 未来大语言模型的研究方向
    • 10.1 跨语言模型
    • 10.2 领域特定的优化
    • 10.3 模型的自治学习能力
    • 10.4 增强人机协作
  • 11. 总结与思考

1. 前言

随着人工智能技术的飞速发展,大语言模型(Large Language Models, LLMs)成为了一个备受关注的研究领域。这些模型通过处理海量的数据来理解和生成自然语言文本,展现出令人惊叹的表现力。ChatGPT是其中的佼佼者,它基于GPT-3和GPT-4模型,能够与人类进行自然流畅的对话,为用户提供丰富的信息和帮助。

在本篇博客中,我们将深入探讨大语言模型的原理,ChatGPT的架构与应用,及其在各个领域中的实际应用。同时,还会讨论该技术带来的挑战和未来的发展趋势。

2. 大语言模型的概述

2.1 什么是大语言模型?

大语言模型是一类能够理解和生成文本的深度学习模型。它们基于Transformer架构,通过自回归的方式生成文本。大语言模型利用大量的文本数据进行预训练,学习到语言中的模式和规律,从而能够理解输入并生成相关的输出。

例如,GPT-3模型是由OpenAI开发的,它拥有1750亿个参数,使其能够理解上下文,生成语法正确并且语义合理的文本。这种规模的模型能够处理极其复杂的任务,包括语言翻译、写作、编程辅助等。

2.2 Transformer架构的核心

Transformer架构是大语言模型的核心,它利用注意力机制(Attention Mechanism),通过关注输入文本的不同部分,来理解上下文中的关联。与传统的循环神经网络(RNN)不同,Transformer可以并行处理数据,因此能够更快地处理大规模数据,并有效解决长期依赖问题。

Transformer模型的基本结构包括两个部分:

编码器(Encoder):负责将输入数据编码为一个隐藏状态表示。
解码器(Decoder):基于编码器的隐藏状态表示生成输出。

2.3 预训练与微调

大语言模型通常通过**预训练(Pretraining)和微调(Fine-tuning)**两个步骤进行训练。预训练阶段,模型会在大量无标注的数据上进行自监督学习,从而学习到基本的语言结构。微调阶段则是将模型在特定任务的数据上进行训练,以便模型能够执行特定的任务,如文本分类、对话生成等。

3. ChatGPT的架构与技术背景

3.1 GPT模型的演进

ChatGPT是基于GPT模型家族的一员,其核心模型是GPT-3和更先进的GPT-4。GPT(Generative Pretrained Transformer)系列模型的特点在于:

GPT-1:首次提出使用无监督学习进行预训练,再进行有监督学习微调的方式。
GPT-2:模型规模大幅提升,具备更强的语言生成能力,但也带来了生成虚假信息的潜在风险。
GPT-3:进一步扩展模型的参数规模,使其在少样本学习(Few-shot learning)上表现出色。
在GPT-4中,模型的表现进一步提高,不仅在语言理解和生成上表现卓越,还具备更强的多模态处理能力。

3.2 ChatGPT的工作原理

ChatGPT基于GPT架构,能够生成与上下文相关的自然语言响应。其主要流程如下:

输入处理:用户输入文本被转化为词向量,作为模型的输入。
上下文理解:模型通过上下文注意力机制理解输入内容,并生成适当的响应。
输出生成:基于输入上下文,生成最有可能的文本输出。
为了提高对话的连贯性和上下文理解,ChatGPT还使用了一些额外的技术,如**动量控制(Momentum Control)**来避免生成不连贯的内容。

4. ChatGPT的实际应用

4.1 日常对话助手

ChatGPT作为一个对话模型,能够帮助用户完成日常对话任务。无论是回答问题、提供建议,还是进行闲聊,它都能够生成自然且有趣的对话内容。这一特性使其在个人助理、社交聊天机器人等应用中大放异彩。

4.2 内容生成与写作

ChatGPT可以生成高质量的文本,从新闻稿、故事、到技术文档等,展现出强大的文字处理能力。它能够根据给定的提示生成与上下文相关的内容,减少人工撰写的时间和精力。例如,媒体和营销领域使用ChatGPT来快速生成文章草稿。

4.3 编程辅助

在编程领域,ChatGPT能够帮助开发者生成代码,解答编程问题。通过理解用户的输入,它可以提供代码片段或优化建议。这为开发人员提供了更便捷的编码体验,尤其是对于复杂的算法问题和错误调试,ChatGPT能够提供迅速而精准的帮助。

4.4 教育与学习辅助

ChatGPT的对话能力使其成为教育领域的有力工具。学生可以通过与ChatGPT互动来获得知识,解答问题。它能够解释复杂的概念,并根据学生的反馈调整解释的深度和难度。

4.5 客户服务与支持

ChatGPT在自动化客服系统中的应用前景广阔。它能够为客户提供即时的反馈,解答常见问题,减少客户服务的响应时间。同时,ChatGPT能够在理解用户意图的基础上提供个性化建议,从而提升客户的满意度。

5. ChatGPT的挑战与局限性

5.1 数据偏差与生成不准确信息

ChatGPT是基于大规模的互联网数据进行训练的,因此可能会反映出训练数据中的偏见(Bias)。这些偏见可能体现在性别、种族、文化等方面,导致模型生成的内容存在偏差。此外,ChatGPT生成的文本有时会不准确或虚构信息,尤其在涉及事实性问题时。

5.2 隐私与安全问题

由于ChatGPT能够处理大量的用户输入,其处理过程中的隐私保护成为了重要的议题。如果模型接收到敏感信息或机密数据,可能会引发隐私泄露风险。同时,恶意用户可能利用模型生成虚假信息,进行网络欺诈或攻击。

5.3 算力与成本

大语言模型的训练和部署需要巨大的计算资源。GPT-3、GPT-4等模型的参数规模巨大,导致其训练成本和运行成本非常高。这使得模型的使用在一些资源受限的场景中存在一定的困难。

6. 未来展望

6.1 多模态学习的发展

随着大语言模型的发展,多模态学习逐渐成为一个重要趋势。未来的ChatGPT可能不仅能够处理文本,还能处理图像、音频等多种形式的数据。这将极大提升其在多个应用场景中的表现,如自动驾驶、智能家居等。

6.2 个性化与情感理解

未来的ChatGPT可能会更注重用户的个性化需求,并且具备更强的情感理解能力。通过不断优化上下文理解和情感分析,模型将能够根据用户的情感状态调整对话风格和内容,从而提供更人性化的交互体验。

6.3 可解释性与透明度

随着大语言模型在各个领域中的广泛应用,如何提升模型的**可解释性(Explainability)和透明度(Transparency)**成为了一个关键问题。研究人员正在致力于开发能够解释模型决策过程的技术,以增强用户对模型的信任。

7. 结论

大语言模型的发展正在推动人工智能领域的变革,而ChatGPT作为这一技术的代表,展示了其在对话、生成、教育等多个领域中的巨大潜力。然而,随着技术的进步,我们也需要更加关注模型的安全性、隐私保护以及伦理问题。未来,随着多模态学习、个性化技术和透明度的提升,ChatGPT有望成为一个更加智能和人性化的助手。

通过不断地优化和创新,ChatGPT将进一步扩展其应用场景,为社会带来更多的便利和价值。

8. 深度分析:大语言模型在实际应用中的挑战与解决方案

随着大语言模型(LLMs)如ChatGPT在多个领域的广泛应用,其能力已经超出了人们的最初设想,然而在实际的应用中仍然存在诸多挑战。下面我们进一步分析这些挑战及其潜在的解决方案。

8.1 事实准确性问题

ChatGPT可以生成语法正确、流畅的文本,但其生成的内容不总是准确无误的。这是因为LLMs在生成文本时依赖于它们所训练的数据,缺乏对事实的内在验证能力。在某些情况下,ChatGPT可能会生成“幻觉”,即与事实不符的内容。这对于应用于科学、医学、金融等领域的任务尤为棘手,用户依赖模型提供准确的信息,然而虚假的输出可能会导致严重后果。

解决方案:

基于知识库的增强模型:通过将大语言模型与知识库结合,可以提升其生成内容的准确性。知识库可以提供事实验证和背景知识,确保模型输出的内容是最新且经过验证的。

后处理验证:引入后处理步骤对生成的文本进行验证,尤其是当输出包含事实性陈述时。可以使用基于规则或**检索增强的生成模型(RAG)**等技术来验证生成内容的准确性。

8.2 偏见与伦理问题

大语言模型学习自海量的互联网数据,因此其输出可能会携带训练数据中的偏见。这些偏见可能表现为性别、种族、文化等方面的不公正内容。ChatGPT等模型的潜在风险在于,无论在对话还是生成的文本中,这些偏见都有可能被放大并传播。

解决方案:

数据去偏处理:在数据处理和训练前,通过去偏技术过滤掉训练数据中的不当信息。同时,也可以设计出更多的公平性约束,确保模型的生成内容不会偏向某一特定群体。

审计与监控:构建能够实时监控和审计模型输出的系统,确保不偏不倚。人工干预也可以在某些应用中帮助防止不良输出扩散。

8.3 可解释性问题

LLMs的决策过程是高度复杂且不透明的,用户往往很难理解为什么模型生成了某一特定输出。这种“黑箱”效应在某些应用场景下(如医疗决策或法律文本生成)可能会引发信任问题。用户可能希望了解模型的决策逻辑,以确保其输出的合理性。

解决方案:

可解释的模型架构:研究人员正在开发可以解释输出的模型架构,例如通过生成与输出相关的元数据或可视化内容,帮助用户理解模型的推理过程。

可解释性工具:已经有一些工具可以帮助用户理解复杂模型的工作原理,如SHAP(Shapley Additive Explanations)和LIME(Local Interpretable Model-Agnostic Explanations)等。这些工具通过分析模型对不同输入的反应,帮助解释其内部运作机制。

8.4 计算资源与成本问题

训练和部署大规模语言模型需要极高的计算资源。像GPT-4这样的模型需要大量的GPU资源来训练,并且其推理过程也非常耗费计算资源。这不仅增加了硬件成本,还对能源消耗提出了挑战。

解决方案:

模型蒸馏与压缩:通过**知识蒸馏(Knowledge Distillation)**和其他压缩技术,将大型模型的知识传递给更小、更高效的模型,减少计算资源的消耗。这种方式能够在保留大模型性能的同时显著降低计算需求。

优化硬件与算法:使用更加高效的硬件(如TPU或更为先进的GPU架构)以及更加优化的算法(如混合精度训练、稀疏矩阵运算等)可以降低训练和推理的成本。

9. ChatGPT在不同行业中的应用实例

9.1 医疗行业

在医疗领域,ChatGPT可以用于健康咨询、病历记录、医疗文档生成等场景。通过理解医学术语和患者描述,ChatGPT能够为医生提供辅助诊断建议或帮助生成病历。然而,由于生成内容的准确性至关重要,医疗应用需要特别重视模型的验证和事实性检测。

9.2 法律行业

ChatGPT在法律行业的应用前景广阔。它能够帮助律师和法律顾问快速生成合同、协议或法律文书草稿,并通过自然语言处理技术进行法律文本的解析和建议。由于法律内容的敏感性,使用过程中需要确保模型生成内容的合法性与准确性。

9.3 教育行业

教育领域是ChatGPT的另一个重要应用场景。它可以作为智能教育助手,帮助学生解答问题、解释复杂概念或提供学习材料。通过互动式学习,学生可以获得个性化的教育体验。同时,ChatGPT还可以用于教师的教学辅助工作,如批改作业、提供课件等。

9.4 客户服务与电商

ChatGPT的强大对话能力使其成为了客户服务领域的热门工具。它能够自动处理大量的客户问题,如订单查询、故障排除等,极大地降低了人力成本。电商平台则利用其生成个性化推荐信息或与顾客进行交互,以提升用户体验和销售转化率。

10. 未来大语言模型的研究方向

10.1 跨语言模型

目前的大语言模型在处理单一语言上的表现非常优秀,但在跨语言任务中仍然存在局限。未来,跨语言模型将会更加普及,这些模型将能够在不依赖语言标签的情况下同时处理多种语言,真正实现全球化的对话与信息处理。

10.2 领域特定的优化

尽管大语言模型在通用场景中表现优异,但在特定领域中往往需要额外的优化。未来的研究方向之一是开发领域特定的大语言模型,如专注于法律、医学或工程领域的模型,这些模型可以针对性地提供更为精确的专业建议。

10.3 模型的自治学习能力

未来的大语言模型可能具备更强的自治学习能力,即能够根据实时反馈或与用户的互动进行自我改进。这种自适应性将极大提高模型的智能化水平,使其更好地应对变化中的任务要求和用户需求。

10.4 增强人机协作

未来,大语言模型的作用不仅限于自动生成文本或回答问题,而是成为增强人类智能的工具。通过与大语言模型的协作,专业人员能够更快、更准确地完成工作。人类的创造力与机器的计算能力相结合,将会带来全新的生产力提升。

11. 总结与思考

大语言模型如ChatGPT展示了其巨大的潜力和应用前景。从日常对话助手、内容生成到行业应用,它们已经渗透到多个领域,极大地提高了生产力。然而,我们也必须认识到,技术的快速发展带来了新的挑战,包括生成内容的准确性、偏见、可解释性和成本等问题。

未来,随着多模态学习、自适应模型、领域特定优化等技术的不断进步,大语言模型将更深入地融入我们的日常生活和工作中,成为不可或缺的智能助手。通过与大语言模型的有效协作,人类将能够在知识获取、信息处理和决策支持等方面取得更大的突破。

相关文章:

大语言模型与ChatGPT:深入探索与应用

文章目录 1. 前言2. 大语言模型的概述2.1 什么是大语言模型?2.2 Transformer架构的核心2.3 预训练与微调 3. ChatGPT的架构与技术背景3.1 GPT模型的演进3.2 ChatGPT的工作原理 4. ChatGPT的实际应用4.1 日常对话助手4.2 内容生成与写作4.3 编程辅助4.4 教育与学习辅…...

【从零开始的LeetCode-算法】3164.优质数对的总数 II

给你两个整数数组 nums1 和 nums2&#xff0c;长度分别为 n 和 m。同时给你一个正整数 k。 如果 nums1[i] 可以被 nums2[j] * k 整除&#xff0c;则称数对 (i, j) 为 优质数对&#xff08;0 < i < n - 1, 0 < j < m - 1&#xff09;。 返回 优质数对 的总数。 示…...

FastDFS VS MinIO:文件存储与对象存储的抉择(包含SpringBoot集成FastDFS范例)

FastDFS vs MinIO&#xff1a;文件存储与对象存储的抉择&#xff08;包含SpringBoot集成FastDFS范例&#xff09; 我坐在窗边&#xff0c;随着飞机穿过云层&#xff0c;在云层之上滑翔。可以清晰的看到飞机在天空留下的痕迹&#xff0c;不知道那是蔚蓝中的纯白&#xff0c;还是…...

【Redis】缓存预热、雪崩、击穿、穿透、过期删除策略、内存淘汰策略

Redis常见问题总结&#xff1a; Redis常见问题总结Redis缓存预热Redis缓存雪崩Redis缓存击穿Redis缓存穿透 Redis 中 key 的过期删除策略数据删除策略 Redis内存淘汰策略一、Redis对过期数据的处理&#xff08;一&#xff09;相关配置&#xff08;二&#xff09;内存淘汰流程&a…...

【LeetCode】每日一题 2024_10_15 三角形的最大高度(枚举、模拟)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动&#xff01; 题目&#xff1a;三角形的最大高度 代码与解题思路 久违的简单题 这道题读完题目其实不难想到有两条路可以走&#xff1a; 1、题目很明显只有两种情况&#xff0c;枚举是第一个球是红球还是蓝球这两种情…...

2024版最新网络安全工程师入门教程(非常详细)从零基础入门到精通,看完这一篇就够了

前言 想要成为网络安全工程师&#xff0c;却苦于没有方向&#xff0c;不知道从何学起的话&#xff0c;下面这篇 网络安全入门 教程可以帮你实现自己的网络安全工程师梦想&#xff0c;如果想学&#xff0c;可以继续看下去&#xff0c;文章有点长&#xff0c;希望你可以耐心看到…...

vue中关于router.beforeEach()的用法

router.beforeEach()是Vue.js中的路由守卫&#xff0c;用于在路由跳转前进行校验、取消、重定向等操作。 基本使用&#xff1a; const router new VueRouter({ ... })router.beforeEach((to, from, next) > {// ... }) to: 即将要进入的目标路由对象 from: 当前导航正要…...

C++模板初阶,只需稍微学习;直接起飞;泛型编程

&#x1f913;泛型编程 假设像以前交换两个函数需要&#xff0c;函数写很多个或者要重载很多个&#xff1b;那么有什么办法实现一个通用的函数呢&#xff1f; void Swap(int& x, int& y) {int tmp x;x y;y tmp; } void Swap(double& x, double& y) {doubl…...

【数据结构 | 红黑树】红黑树的性质和插入结点时的调整

文章目录 红黑树红黑树插入时的调整&#xff1f;1. 插入结点是根结点2. 插入结点的叔叔是红色3. 插入结点的叔叔是黑色LL 型RR型LR型RL型 红黑树 前提&#xff1a;二叉搜索树&#xff08;左 < 根 < 右&#xff09;—— 左根右根和**叶子&#xff08;NULL&#xff09;**都…...

mysql学习教程,从入门到精通,SQL导入数据(44)

1.SQL 导出数据 以下是一个关于如何使用 SQL 导出数据的示例。这个示例将涵盖从一个关系数据库管理系统&#xff08;如 MySQL&#xff09;中导出数据到 CSV 文件的基本步骤。 1.1、前提条件 你已经安装并配置好了 MySQL 数据库。你有访问数据库的权限。你知道要导出的表名。…...

【SpringAI】(二)让你的Java程序接入大模型——适合Java宝宝的大模型应用开发

开始之前&#xff0c;如果你对大模型完全没了解过&#xff0c;建议阅读之前的大模型入门文章&#xff1a; 【SpringAI】&#xff08;一&#xff09;从实际场景入门大模型——适合Java宝宝的大模型应用开发 那么今天就开始写一个基于Spring AI程序的HelloWord!将大模型接入到咱…...

音频剪辑在线工具 —— 让声音更精彩

你是否曾梦想过拥有自己的声音创作空间&#xff0c;却苦于复杂的音频编辑软件&#xff1f;接下来&#xff0c;让我们一同揭开这些音频剪辑在线工具的神秘面纱&#xff0c;看看它们如何帮助你实现从录音到发布的无缝衔接。 1.福昕音频剪辑 链接直达>>https://www.foxits…...

​http短连接和长连接​

参考短连接和长连接 短连接&#xff1a;客户端向服务器每进行一次Http操作&#xff0c;都需建立一次连接&#xff0c;任务完成后&#xff0c;断开连接&#xff1b;长连接&#xff1a;建立长连接后&#xff0c;传输数据的连接将不会中断&#xff0c;客户端每次访问服务器时都会…...

日志分析删除

日志分析 场景 运维嫌弃生产环境打印日志过多&#xff0c;而且日志存储需要费用&#xff0c;让我们减少打印日志大小&#xff0c;所以需要分析日志在哪里打印的过多 解决方案 读取生产日志文件&#xff0c;统计分析打印日志的地方&#xff0c;最后删除代码中打印日志的地方…...

DART: Implicit Doppler Tomography for Radar Novel View Synthesis 笔记

Link&#xff1a;https://wiselabcmu.github.io/dart/ Publish&#xff1a; 2024CVPR Abstract DART主要任务就是用来合成雷达距离多普勒图像range-droppler&#xff0c;可用于生成高质量的断层扫描图像。 Related Work 1 Radar Simulation 基于模型的方法 任务&#xff…...

redis-cli执行lua脚本

连接redis服务器命令 redis-cli -h 10.10.xx.xx -p 6380 -a password执行lua脚本传递KEY VALUE redis-cli -h 10.10.xx.xx -p 6380 -a password key1 key2 , arg1 arg2key和参数通过逗号分割&#xff0c;逗号前后必须有一个空格 如下执行lua脚本示例&#xff1a; -- script.…...

MySQL9的3个新特性

【图书推荐】《MySQL 9从入门到性能优化&#xff08;视频教学版&#xff09;》-CSDN博客 《MySQL 9从入门到性能优化&#xff08;视频教学版&#xff09;&#xff08;数据库技术丛书&#xff09;》(王英英)【摘要 书评 试读】- 京东图书 (jd.com) 本文讲解MySQL9的3个新特性&…...

《网络基础之 HTTP 协议:状态码含义全解析》

《网络基础之 HTTP 协议&#xff1a;状态码含义全解析》 在网络通信的浩瀚世界中&#xff0c;HTTP 协议犹如一座坚实的桥梁&#xff0c;连接着客户端与服务器。而其中的状态码&#xff0c;则是这座桥梁上的重要标识&#xff0c;为双方的交互提供了关键的反馈信息。 一、状态码…...

java真的正在越来越失去竞争力了吗

题记&#xff1a; java真的在越来越失去竞争力了吗&#xff1f;最近参加校招面试&#xff0c;过程中有问道java的问题&#xff0c;有的同学很直接了当&#xff08;或者是不假思索&#xff09;地说&#xff0c;java已经过时了吧&#xff0c;现在学java的人越来越少了。那么事实…...

【通过zip方式安装mysql服务】

通过zip方式安装mysql服务 Mysql安装包下载mysql安装及环境配置1.解压缩配置环境变量初始化mysql配置安装mysql服务启动MySQL服务连接mysql修改root用户密码 Mysql安装包下载 通过访问mysql官网下载&#xff1a;mysql下载地址 mysql安装及环境配置 1.解压缩 下载完成后&am…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...