当前位置: 首页 > news >正文

python机器学习(手写数字识别)

# 导包
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import joblib
from collections import Counter


# 1. 定义函数 show_digit(idx), 用于查看: 数字图片.
def show_digit(idx):
    # idx: 行索引, 即: 要哪行的数据.
    # 1. 读取数据, 获取df对象.
    data = pd.read_csv('data/手写数字识别.csv')
    # 细节: 非法值校验.
    if idx < 0 or idx > len(data) - 1 :
        return
    # 2. 获取数据, 即: 特征 + 标签
    x = data.iloc[:, 1:]
    y = data.iloc[:, 0]
    # 3. 查看下数据集.
    print(f'x的维度: {x.shape}')           # (42000, 784)
    print(f'y的各分类数量: {Counter(y)}')   # Counter({1: 4684, 7: 4401, 3: 4351, 9: 4188, 2: 4177, 6: 4137, 0: 4132, 4: 4072, 8: 4063, 5: 3795})

    # 4. 获取具体的 某张图片, 即: 某行数据 => 样本数据.
    # step1: 把图片转成 28 * 28像素(二维数组)
    digit = x.iloc[idx].values.reshape(28, 28)
    # step2: 显示图片.
    plt.imshow(digit, cmap='gray')      # 灰色显示 => 灰度图
    # step3: 取消坐标显示.
    plt.axis('off')
    # step4: 显示图片
    plt.show()

# 2. 定义函数 train_model(), 用于训练模型.
def train_model():
    # 1. 读取数据, 获取df对象.
    data = pd.read_csv('data/手写数字识别.csv')
    # 2. 获取数据, 即: 特征 + 标签
    x = data.iloc[:, 1:]
    y = data.iloc[:, 0]
    # 3. 数据的预处理.
    # step1: x轴(像素点)的 归一化处理.
    x = x / 255
    # step2: 区分训练集和测试集.       stratify: 按照y的类别比例进行分割
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y, random_state=21)
    # 4. 训练模型.
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train, y_train)
    # 5. 模型预估, 评测正确率.
    my_score = estimator.score(x_test, y_test)
    print(f'模型预估正确率: {my_score}')       # 0.9657142857142857
    # 6. 保存模型.
    joblib.dump(estimator, 'model/knn.pth')


# 3. 定义use_model()函数, 用于: 测试模型.
def use_model():       # pytest
    # 1. 加载图片.
    img = plt.imread('data/demo.png')       # 28 * 28像素
    plt.imshow(img, cmap='gray')    # 灰度图
    plt.show()

    # 2. 加载模型.
    estimator = joblib.load('model/knn.pth')

    # 3. 预测图片.
    img = img.reshape(1, -1)    # 效果等价于: reshape(1, 784)
    y_test = estimator.predict(img)
    print(f'预测的数字是: {y_test}')

# 4. 在main函数中测试.
if __name__ == '__main__':
    # 显示数字图片.
    # show_digit(10)
    # show_digit(21)

    # 训练模型
    # train_model()

    # 测试模型
    use_model()

相关文章:

python机器学习(手写数字识别)

# 导包 import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import joblib from collections import Counter # 1. 定义函数 show_digit(idx), 用于查看: 数字图…...

如何针对项目中的技术难点准备面试?——黑马点评为例

最核心的&#xff0c;包装和准备 个人项目&#xff0c;怎么包装&#xff1f;一定要写出代码才可以吗&#xff1f; 你可以在系统A中实现就可以&#xff0c;了解其中实现的细节&#xff0c;怎么跟面试官对线等等&#xff0c;这些话术到位了之后&#xff0c;再把它融入到系统B&a…...

ARP欺骗的多种手法

学习参考&#xff1a; ARP欺骗的各种d玩法-CSDN博客 https://juejin.cn/post/7383702153892954164 一、什么是ARP欺骗 1.什么是ARP&#xff1f; ARP (Address Resolution Protocol) 是一种网络层协议&#xff0c;用于将 IP 地址转换为物理地址&#xff08;MAC 地址&#xff0…...

HCIA——one

推荐电影&#xff1a;《模仿游戏》《黑客帝国》《头号玩家》 图灵机每秒五千次计算&#xff0c;当今计算机4080ti算力每秒21万亿次的计算。 OSI七层模型 应用层&#xff1a;人机交互&#xff0c;将抽象语言转换成编码 表示层&#xff1a;将编码转换成二进制 介质访问控制层…...

【vue】⾃定义指令+插槽+商品列表案例

代码获取 07-⾃定义指令插槽商品列表案例 ⼀、⾃定义指令 1. 基本使⽤ 1.1 指令介绍 内置指令&#xff1a;v-model、v-for、v-bind、v-on… 这都是Vue给咱们内置的⼀些指令&#xff0c;可以直接使⽤ ⾃定义指令&#xff1a;同时Vue也⽀持让开发者&#xff0c;⾃⼰注册⼀些…...

多线程——线程的等待通知

目录 前言 一、wait() 方法 1.方法介绍 2.代码示例 3.wait 和 sleep 的区别 二、notify() 方法 1.方法介绍 2.代码示例 三、notifyAll() 方法 1.方法介绍 2.代码示例 结尾 前言 由于线程之间是抢占式执行的&#xff0c;因此线程之间的执行顺序是难以预知的&#xf…...

模态与非模态的对话框

本文学习自&#xff1a; 《Qt Creato快速入门》 #include "widget.h" #include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); }1. #include "widget.h" #include "ui_w…...

C语言练习

题目&#xff1a; 1.运用switch选择语句&#xff0c;编写一段C语言&#xff0c;请根据输入的数字&#xff0c;显示相应的星期日&#xff0c;如果数字所对应的星期日并不存在请显示“抱歉&#xff0c;您输入的内容并不存在。” 分析&#xff1a;1.在本题中&#xff0c;要运用到…...

CyberRt实践之Hello Apollo(Apollo 9.0版本)

apollo9.0环境安装参考官方网站 apollo.baidu.com/community/Apollo-Homepage-Document?docBYFxAcGcC4HpYIbgPYBtXIHQCMEEsATAV0wGNkBbWA5UyRFdZWVBEAU0hFgoIH0adPgCY%2BADwCiAVnEAhAILiAnABZxEgOzK1Y%2BQA51M3ROUnJBsbK2WZoyUdkBhcXoAMhlwDFlARnUXZdzE9AGY%2BbFINADYpUhCEFW…...

【JavaScript】LeetCode:61-65

文章目录 61 课程表62 实现Trie&#xff08;前缀树&#xff09;63 全排列64 子集65 电话号码的字母组合 61 课程表 Map BFS拓扑排序&#xff1a;将有向无环图转为线性顺序。遍历prerequisites&#xff1a;1. 数组记录每个节点的入度&#xff0c;2. 哈希表记录依赖关系。n 6&a…...

【SpringAI】(一)从实际场景入门大模型——适合Java宝宝的大模型应用开发

一、简单场景介绍 假设你需要为一个商城项目接入一个基于SpringAI的智能客服系统&#xff0c;现在我们来基本模拟一下&#xff1a; 当我通过系统提问&#xff0c;大模型会针对我的问题进行回答。 当我们通过程序提问时&#xff0c;SpringAI会将我们的提问封装成Prompts&#x…...

植物大战僵尸杂交版

最新版植物大战僵尸杂交版 最近本款游戏火爆 下载资源如下&#xff1a; win版本&#xff1a;2.3.7 链接&#xff1a;下载地址 提取码&#xff1a;9N3P Mac&#xff08;苹果版本&#xff09;&#xff1a;2.0.0 链接&#xff1a;下载地址 提取码&#xff1a;Bjaa 介绍&#xff…...

live2d 实时虚拟数字人形象页面显示,对接大模型

live2dSpeek 测试不用gpu可以正常运行 https://github.com/lyz1810/live2dSpeek 运行的话还需要额外下载https://github.com/lyz1810/edge-tts支持语音 ## 运行live2dSpeek >npm install -g http-server >http-server . ## 运行edge-tts python edge-tts.py...

SpringCloud-持久层框架MyBatis Plus的使用与原理详解

在现代微服务架构中&#xff0c;SpringCloud 是一个非常流行的解决方案。而在数据库操作层面&#xff0c;MyBatis Plus 作为 MyBatis 的增强工具&#xff0c;能够简化开发&#xff0c;提升效率&#xff0c;特别是在开发企业级应用和分布式系统时尤为有用。本文将详细介绍 MyBat…...

Servlet的HttpServletRequest

HttpServletRequest是Java Servlet规范中定义的一个接口&#xff0c;它表示客户端向服务器发送的请求&#xff0c;并提供了与HTTP请求相关的方法和属性。 getSession方法()&#xff1a;用于获取与当前请求相关联的HttpSession对象。 setAttribute(String name, Object value)…...

U9销售订单不能带出最新价格出来

业务员突然说系统带不出来销售价格。了解之后&#xff0c;不是带不出来价格&#xff0c;是做了价格调整之后&#xff0c;最新价格没有匹配出来&#xff0c;带出来的价格是历史价格。检查&#xff0c;分析相关的单据&#xff0c;生效日期&#xff0c;失效日期&#xff0c;审核状…...

Jmeter接口测试企业级项目实战day1

1.接口测试 接口测试工具&#xff1a; JMeter&#xff1a;支持多种接口类型&#xff0c;还能测试性能&#xff0c;开源&#xff0c;开源进行二次扩展。 Postman&#xff1a;简单&#xff0c;方便&#xff0c;局限性比较大&#xff0c;适合开发临时行调试 APIFox等&#xff1a;新…...

接口测试面试题含答案

1、解释一下正向和逆向测试。 正向测试&#xff1a;针对接口设计预期的功能和行为&#xff0c;验证接口是否按照预期工作。 逆向测试&#xff1a;针对错误输入、不合理的条件或非预期的使用方式&#xff0c;验证接口是否能够适当地处理这些情况并提供合理的错误处理。 2、什…...

横板营业执照提取生成

前言 有一段时间没发博客了&#xff0c;今天分享下几个月前做的营业执照提取器UI 预览图 框架 b-ui很好用&#xff0c;这个前端框架作者 发布的插件我都会用&#xff0c;鱿鱼助手也是基于这个框架开发的 代码 html <template><view><template><view…...

webm格式怎么转换成mp4?这5种转换方法很好用

现如今&#xff0c;视频格式繁多&#xff0c;而webm作为一种由谷歌开发的视频格式&#xff0c;以其高画质和低带宽需求著称。然而&#xff0c;并非所有设备和播放器都完美支持webm格式&#xff0c;这时将其转换为兼容性更强的MP4格式就显得尤为重要。下面给大家分享5种非常简单…...

C/C++语言基础--C++异常看这一篇就够了

本专栏目的 更新C/C的基础语法&#xff0c;包括C的一些新特性 前言 通过前面几节课&#xff0c;我们学习了抽象、封装、继承、多态等相关的概念&#xff0c;接下来我们将讲解异常&#xff0c;异常是专门处理错误的&#xff1b;这一次加了不少图标&#xff0c;希望大家喜欢;C语…...

DFT ATPG中常见影响coverage的因素有哪些?

# DFT ATPG中常见影响Coverage的因素 ## 一、电路结构复杂性 1. **逻辑层次深度** - **原理** - 当电路的逻辑层次很深时,信号在传播过程中会经过多个逻辑门的处理。这使得测试向量难以准确地控制和观察内部节点的状态。例如,在一个具有多层嵌套逻辑的电路中,如一个…...

Python机器学习数据清洗到特征工程策略

Python机器学习数据清洗到特征工程策略 目录 ✨ 数据清洗&#xff1a;处理缺失值与异常值的策略&#x1f504; 特征选择&#xff1a;筛选与数据目标高度相关的特征&#x1f6e0; 特征工程&#xff1a;数据转换与生成新特征的多样化方法&#x1f4ca; 类别型变量的数值化&…...

多线程-进阶(2)CountDownLatchConcurrentHashMapSemaphore

目的; JUC(java.util.concurrent) 的常⻅类 接着上一节课到 1.信号量 Semaphore 信号量, ⽤来表⽰ "可⽤资源的个数". 本质上就是⼀个计数器。 理解信号量 可以把信号量想象成是停⻋场的展⽰牌: 当前有⻋位 100 个. 表⽰有 100 个可⽤资源. 当有⻋开进去的时候,…...

密码管理器KeePass的安装及使用

文章目录 软件下载安装汉化新建数据库创建\移动\修改 群组添加/修改/删除/移动 记录展示、搜索、锁定单独使用keepass生成密码的功能AES-256的密钥长度为256位&#xff0c;为啥可以设置超过32个字符的密钥&#xff1f; 软件下载 安装 分别解压&#xff1a;KeePass-2.53.1.zip&…...

星海智算:【萤火遛AI-Stable-Diffusion】无需部署一键启动

部署流程 1、注册算力云平台&#xff1a;星海智算 https://gpu.spacehpc.com/ 2、创建实例&#xff0c;镜像请依次点击&#xff1a;“镜像市场”->“更换”->“AI绘画”->“萤火遛AI-Stable Diffusion”。 程序首次启动可能需要几分钟&#xff0c;待实例显示“运行…...

JS生成器的特殊用法:委托yield*

yield 的基本用法 yield 用于在生成器函数中暂停函数执行&#xff0c;并返回一个值给外部调用者。当生成器再次被调用时&#xff0c;会从暂停的地方继续执行。 示例&#xff1a; function* simpleGenerator() {yield 1;yield 2;yield 3; }const gen simpleGenerator();cons…...

【CuPy报错】NVRTC_ERROR_COMPILATION (6)找不到 ‘vector_types.h‘

cupy安装不要再使用pip install cupy了&#xff0c; 已经替换成基于版本安装了pip install cupy-cuda12x&#xff0c;详见cupy官网。 安装完成后&#xff0c;在import cupy之后报错&#xff0c;找不到 ‘vector_types.h’: CompileException: /home/zoe/venv/lib/python3.10/…...

机器学习:知识蒸馏(Knowledge Distillation,KD)

知识蒸馏&#xff08;Knowledge Distillation&#xff0c;KD&#xff09;作为深度学习领域中的一种模型压缩技术&#xff0c;主要用于将大规模、复杂的神经网络模型&#xff08;即教师模型&#xff09;压缩为较小的、轻量化的模型&#xff08;即学生模型&#xff09;。在实际应…...

【C++入门篇 - 3】:从C到C++第二篇

文章目录 从C到C第二篇new和delete命名空间命名空间的访问 cin和coutstring的基本使用 从C到C第二篇 new和delete 在C中用来向系统申请堆区的内存空间 New的作用相当于C语言中的malloc Delete的作用相当于C语言中的free 注意&#xff1a;在C语言中&#xff0c;如果内存不够…...