当前位置: 首页 > news >正文

【MATLAB源码-第181期】基于matlab的32QAM调制解调系统频偏估计及补偿算法仿真,对比补偿前后的星座图误码率。

操作环境:

MATLAB 2022a

1、算法描述

在通信系统中,频率偏移是一种常见的问题,它会导致接收到的信号频率与发送信号的频率不完全匹配,进而影响通信质量。在调制技术中,QPSK(Quadrature Phase Shift Keying,四相位移键控)和QAM(Quadrature Amplitude Modulation,正交幅度调制)是两种常用的方法,它们可以高效地在给定的频带宽度内传输数据。然而,这两种调制方式都可能受到频偏(频率偏移)的影响。因此,准确估计和补偿这种频偏是提高通信系统性能的关键。

频偏的成因及影响
频偏主要由硬件的非理想特性引起,如本振(Local Oscillator,LO)的不稳定性、信号路径中的温度变化等。此外,移动通信中的多普勒效应也是引起频偏的一个重要因素。频偏不仅会导致接收信号的相位旋转,还会引起相位噪声,降低信号的信噪比(SNR),最终影响数据的解调效果和系统的整体性能。

频偏估计的重要性
在数字通信中,尤其是在使用QPSK和QAM这类高效调制技术的场合,准确估计频偏成为确保通信质量的关键步骤。通过准确估计出来的频偏值,可以相应地调整接收信号,补偿这一偏移,恢复出准确的信号,保证信息能正确无误地被接收方解调。

频偏估计算法的一般流程
频偏估计算法通常包含以下几个步骤:

信号接收与预处理:首先,接收到的信号会经过一系列预处理步骤,包括放大、滤波等,以提高信号质量。

信号转换与提取:将接收到的模拟信号转换为数字信号,然后从中提取I(In-phase)和Q(Quadrature-phase)两个分量,这两个分量包含了信号的幅度和相位信息。

频偏的初始估计:通过对信号的特定处理,如利用信号的周期性特征,初步估计出频偏的大小。这一步通常涉及复杂的数学运算,包括傅里叶变换(FFT)、角度计算等。

频偏的精确估计:在获得初步估计值后,通过进一步的算法优化,如最小二乘法、卡尔曼滤波等,对频偏的估计值进行精确调整,以获得更加准确的频偏值。

频偏补偿:最后,根据估计出的频偏值对接收信号进行相应的频率调整,补偿频偏,从而恢复出准确的原始信号。

算法实现的挑战与对策
实现频偏估计算法时,需要考虑多种因素:

算法的复杂度:算法需要在满足准确度要求的同时,尽可能降低计算复杂度,以适应实时或近实时的通信系统。

环境变化的适应性:算法需要能够适应信号传输过程中可能遇到的各种变化,如多路径传播、信号衰减等。

硬件限制:算法实现还需要考虑硬件的限制,比如处理器的计算能力、内存大小等。

为了解决这些挑战,频偏估计算法的设计通常会采用多种策略,包括算法优化、自适应算法设计、以及利用先进的数字信号处理技术等。

结语
频偏估计是数字通信中一个复杂但至关重要的问题,尤其是在使用高效调制技术如QPSK和QAM的现代通信系统中。一个准确有效的频偏估计算法可以显著提高通信质量和系统性能。随着通信技术的发展,频偏估计和补偿技术也在不断进步,为通信系统的稳定运行和发展提供了重要支撑。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

点击下方原文链接获取

【MATLAB源码-第181期】基于matlab的32QAM调制解调系统频偏估计及补偿算法仿真,对比补偿前后的星座图误码率。_32qam星座图-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/Koukesuki/article/details/137481309?ops_request_misc=%257B%2522request%255Fid%2522%253A%252207F119FD-3CAB-485E-84D1-E4B2561BAC3B%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=07F119FD-3CAB-485E-84D1-E4B2561BAC3B&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-137481309-null-null.nonecase&utm_term=181&spm=1018.2226.3001.4450

相关文章:

【MATLAB源码-第181期】基于matlab的32QAM调制解调系统频偏估计及补偿算法仿真,对比补偿前后的星座图误码率。

操作环境: MATLAB 2022a 1、算法描述 在通信系统中,频率偏移是一种常见的问题,它会导致接收到的信号频率与发送信号的频率不完全匹配,进而影响通信质量。在调制技术中,QPSK(Quadrature Phase Shift Keyi…...

24年856电子线路专业课考场回忆

856考试包含了模电与数电两大部分,24年题型结构为14题选择与14填空,上去大约花了半个小时搞定,唯一记得有几个纠结点:1、开关型稳压电路中开关管怎么接是升压,2、字扩展与位扩展的区别。 接下来就是第三部分的分析计算…...

el-table表格里面有一条横线

表格里面 有一条横线&#xff0c; 出现原因&#xff1a;是自定义了表格头.使用了固定列&#xff08;fixed&#xff09;&#xff0c;定宽。就很难受。。。 添加样式文件&#xff1a; <style lang"scss" scoped>::v-deep {.el-table__fixed-right {height: 100%…...

QT通过QLocalSocket和QSharedMemory实现进程间通信

文章目录 QLocalSocket和QLocalServer客户端服务端QSharedMemory加载数据到共享内存从共享内存中读取数据进程间通信(Inter-Process Communication, IPC)是指在不同进程之间进行数据交换和消息传递的机制。由于不同进程之间在内存和资源使用上的隔离,IPC 是操作系统提供的一种…...

Python中的数据可视化艺术:用Matplotlib和Seaborn讲故事

Python中的数据可视化艺术&#xff1a;用Matplotlib和Seaborn讲故事 数据可视化不仅仅是图表的绘制&#xff0c;更是通过视觉形式传达复杂信息的一种艺术。使用Python中的两个强大的库——Matplotlib和Seaborn&#xff0c;可以将数据转化为清晰、优美的图表&#xff0c;帮助我…...

python机器学习(手写数字识别)

# 导包 import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import joblib from collections import Counter # 1. 定义函数 show_digit(idx), 用于查看: 数字图…...

如何针对项目中的技术难点准备面试?——黑马点评为例

最核心的&#xff0c;包装和准备 个人项目&#xff0c;怎么包装&#xff1f;一定要写出代码才可以吗&#xff1f; 你可以在系统A中实现就可以&#xff0c;了解其中实现的细节&#xff0c;怎么跟面试官对线等等&#xff0c;这些话术到位了之后&#xff0c;再把它融入到系统B&a…...

ARP欺骗的多种手法

学习参考&#xff1a; ARP欺骗的各种d玩法-CSDN博客 https://juejin.cn/post/7383702153892954164 一、什么是ARP欺骗 1.什么是ARP&#xff1f; ARP (Address Resolution Protocol) 是一种网络层协议&#xff0c;用于将 IP 地址转换为物理地址&#xff08;MAC 地址&#xff0…...

HCIA——one

推荐电影&#xff1a;《模仿游戏》《黑客帝国》《头号玩家》 图灵机每秒五千次计算&#xff0c;当今计算机4080ti算力每秒21万亿次的计算。 OSI七层模型 应用层&#xff1a;人机交互&#xff0c;将抽象语言转换成编码 表示层&#xff1a;将编码转换成二进制 介质访问控制层…...

【vue】⾃定义指令+插槽+商品列表案例

代码获取 07-⾃定义指令插槽商品列表案例 ⼀、⾃定义指令 1. 基本使⽤ 1.1 指令介绍 内置指令&#xff1a;v-model、v-for、v-bind、v-on… 这都是Vue给咱们内置的⼀些指令&#xff0c;可以直接使⽤ ⾃定义指令&#xff1a;同时Vue也⽀持让开发者&#xff0c;⾃⼰注册⼀些…...

多线程——线程的等待通知

目录 前言 一、wait() 方法 1.方法介绍 2.代码示例 3.wait 和 sleep 的区别 二、notify() 方法 1.方法介绍 2.代码示例 三、notifyAll() 方法 1.方法介绍 2.代码示例 结尾 前言 由于线程之间是抢占式执行的&#xff0c;因此线程之间的执行顺序是难以预知的&#xf…...

模态与非模态的对话框

本文学习自&#xff1a; 《Qt Creato快速入门》 #include "widget.h" #include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); }1. #include "widget.h" #include "ui_w…...

C语言练习

题目&#xff1a; 1.运用switch选择语句&#xff0c;编写一段C语言&#xff0c;请根据输入的数字&#xff0c;显示相应的星期日&#xff0c;如果数字所对应的星期日并不存在请显示“抱歉&#xff0c;您输入的内容并不存在。” 分析&#xff1a;1.在本题中&#xff0c;要运用到…...

CyberRt实践之Hello Apollo(Apollo 9.0版本)

apollo9.0环境安装参考官方网站 apollo.baidu.com/community/Apollo-Homepage-Document?docBYFxAcGcC4HpYIbgPYBtXIHQCMEEsATAV0wGNkBbWA5UyRFdZWVBEAU0hFgoIH0adPgCY%2BADwCiAVnEAhAILiAnABZxEgOzK1Y%2BQA51M3ROUnJBsbK2WZoyUdkBhcXoAMhlwDFlARnUXZdzE9AGY%2BbFINADYpUhCEFW…...

【JavaScript】LeetCode:61-65

文章目录 61 课程表62 实现Trie&#xff08;前缀树&#xff09;63 全排列64 子集65 电话号码的字母组合 61 课程表 Map BFS拓扑排序&#xff1a;将有向无环图转为线性顺序。遍历prerequisites&#xff1a;1. 数组记录每个节点的入度&#xff0c;2. 哈希表记录依赖关系。n 6&a…...

【SpringAI】(一)从实际场景入门大模型——适合Java宝宝的大模型应用开发

一、简单场景介绍 假设你需要为一个商城项目接入一个基于SpringAI的智能客服系统&#xff0c;现在我们来基本模拟一下&#xff1a; 当我通过系统提问&#xff0c;大模型会针对我的问题进行回答。 当我们通过程序提问时&#xff0c;SpringAI会将我们的提问封装成Prompts&#x…...

植物大战僵尸杂交版

最新版植物大战僵尸杂交版 最近本款游戏火爆 下载资源如下&#xff1a; win版本&#xff1a;2.3.7 链接&#xff1a;下载地址 提取码&#xff1a;9N3P Mac&#xff08;苹果版本&#xff09;&#xff1a;2.0.0 链接&#xff1a;下载地址 提取码&#xff1a;Bjaa 介绍&#xff…...

live2d 实时虚拟数字人形象页面显示,对接大模型

live2dSpeek 测试不用gpu可以正常运行 https://github.com/lyz1810/live2dSpeek 运行的话还需要额外下载https://github.com/lyz1810/edge-tts支持语音 ## 运行live2dSpeek >npm install -g http-server >http-server . ## 运行edge-tts python edge-tts.py...

SpringCloud-持久层框架MyBatis Plus的使用与原理详解

在现代微服务架构中&#xff0c;SpringCloud 是一个非常流行的解决方案。而在数据库操作层面&#xff0c;MyBatis Plus 作为 MyBatis 的增强工具&#xff0c;能够简化开发&#xff0c;提升效率&#xff0c;特别是在开发企业级应用和分布式系统时尤为有用。本文将详细介绍 MyBat…...

Servlet的HttpServletRequest

HttpServletRequest是Java Servlet规范中定义的一个接口&#xff0c;它表示客户端向服务器发送的请求&#xff0c;并提供了与HTTP请求相关的方法和属性。 getSession方法()&#xff1a;用于获取与当前请求相关联的HttpSession对象。 setAttribute(String name, Object value)…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

若依登录用户名和密码加密

/*** 获取公钥&#xff1a;前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...