当前位置: 首页 > news >正文

【MATLAB源码-第181期】基于matlab的32QAM调制解调系统频偏估计及补偿算法仿真,对比补偿前后的星座图误码率。

操作环境:

MATLAB 2022a

1、算法描述

在通信系统中,频率偏移是一种常见的问题,它会导致接收到的信号频率与发送信号的频率不完全匹配,进而影响通信质量。在调制技术中,QPSK(Quadrature Phase Shift Keying,四相位移键控)和QAM(Quadrature Amplitude Modulation,正交幅度调制)是两种常用的方法,它们可以高效地在给定的频带宽度内传输数据。然而,这两种调制方式都可能受到频偏(频率偏移)的影响。因此,准确估计和补偿这种频偏是提高通信系统性能的关键。

频偏的成因及影响
频偏主要由硬件的非理想特性引起,如本振(Local Oscillator,LO)的不稳定性、信号路径中的温度变化等。此外,移动通信中的多普勒效应也是引起频偏的一个重要因素。频偏不仅会导致接收信号的相位旋转,还会引起相位噪声,降低信号的信噪比(SNR),最终影响数据的解调效果和系统的整体性能。

频偏估计的重要性
在数字通信中,尤其是在使用QPSK和QAM这类高效调制技术的场合,准确估计频偏成为确保通信质量的关键步骤。通过准确估计出来的频偏值,可以相应地调整接收信号,补偿这一偏移,恢复出准确的信号,保证信息能正确无误地被接收方解调。

频偏估计算法的一般流程
频偏估计算法通常包含以下几个步骤:

信号接收与预处理:首先,接收到的信号会经过一系列预处理步骤,包括放大、滤波等,以提高信号质量。

信号转换与提取:将接收到的模拟信号转换为数字信号,然后从中提取I(In-phase)和Q(Quadrature-phase)两个分量,这两个分量包含了信号的幅度和相位信息。

频偏的初始估计:通过对信号的特定处理,如利用信号的周期性特征,初步估计出频偏的大小。这一步通常涉及复杂的数学运算,包括傅里叶变换(FFT)、角度计算等。

频偏的精确估计:在获得初步估计值后,通过进一步的算法优化,如最小二乘法、卡尔曼滤波等,对频偏的估计值进行精确调整,以获得更加准确的频偏值。

频偏补偿:最后,根据估计出的频偏值对接收信号进行相应的频率调整,补偿频偏,从而恢复出准确的原始信号。

算法实现的挑战与对策
实现频偏估计算法时,需要考虑多种因素:

算法的复杂度:算法需要在满足准确度要求的同时,尽可能降低计算复杂度,以适应实时或近实时的通信系统。

环境变化的适应性:算法需要能够适应信号传输过程中可能遇到的各种变化,如多路径传播、信号衰减等。

硬件限制:算法实现还需要考虑硬件的限制,比如处理器的计算能力、内存大小等。

为了解决这些挑战,频偏估计算法的设计通常会采用多种策略,包括算法优化、自适应算法设计、以及利用先进的数字信号处理技术等。

结语
频偏估计是数字通信中一个复杂但至关重要的问题,尤其是在使用高效调制技术如QPSK和QAM的现代通信系统中。一个准确有效的频偏估计算法可以显著提高通信质量和系统性能。随着通信技术的发展,频偏估计和补偿技术也在不断进步,为通信系统的稳定运行和发展提供了重要支撑。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

点击下方原文链接获取

【MATLAB源码-第181期】基于matlab的32QAM调制解调系统频偏估计及补偿算法仿真,对比补偿前后的星座图误码率。_32qam星座图-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/Koukesuki/article/details/137481309?ops_request_misc=%257B%2522request%255Fid%2522%253A%252207F119FD-3CAB-485E-84D1-E4B2561BAC3B%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=07F119FD-3CAB-485E-84D1-E4B2561BAC3B&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-137481309-null-null.nonecase&utm_term=181&spm=1018.2226.3001.4450

相关文章:

【MATLAB源码-第181期】基于matlab的32QAM调制解调系统频偏估计及补偿算法仿真,对比补偿前后的星座图误码率。

操作环境: MATLAB 2022a 1、算法描述 在通信系统中,频率偏移是一种常见的问题,它会导致接收到的信号频率与发送信号的频率不完全匹配,进而影响通信质量。在调制技术中,QPSK(Quadrature Phase Shift Keyi…...

24年856电子线路专业课考场回忆

856考试包含了模电与数电两大部分,24年题型结构为14题选择与14填空,上去大约花了半个小时搞定,唯一记得有几个纠结点:1、开关型稳压电路中开关管怎么接是升压,2、字扩展与位扩展的区别。 接下来就是第三部分的分析计算…...

el-table表格里面有一条横线

表格里面 有一条横线&#xff0c; 出现原因&#xff1a;是自定义了表格头.使用了固定列&#xff08;fixed&#xff09;&#xff0c;定宽。就很难受。。。 添加样式文件&#xff1a; <style lang"scss" scoped>::v-deep {.el-table__fixed-right {height: 100%…...

QT通过QLocalSocket和QSharedMemory实现进程间通信

文章目录 QLocalSocket和QLocalServer客户端服务端QSharedMemory加载数据到共享内存从共享内存中读取数据进程间通信(Inter-Process Communication, IPC)是指在不同进程之间进行数据交换和消息传递的机制。由于不同进程之间在内存和资源使用上的隔离,IPC 是操作系统提供的一种…...

Python中的数据可视化艺术:用Matplotlib和Seaborn讲故事

Python中的数据可视化艺术&#xff1a;用Matplotlib和Seaborn讲故事 数据可视化不仅仅是图表的绘制&#xff0c;更是通过视觉形式传达复杂信息的一种艺术。使用Python中的两个强大的库——Matplotlib和Seaborn&#xff0c;可以将数据转化为清晰、优美的图表&#xff0c;帮助我…...

python机器学习(手写数字识别)

# 导包 import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import joblib from collections import Counter # 1. 定义函数 show_digit(idx), 用于查看: 数字图…...

如何针对项目中的技术难点准备面试?——黑马点评为例

最核心的&#xff0c;包装和准备 个人项目&#xff0c;怎么包装&#xff1f;一定要写出代码才可以吗&#xff1f; 你可以在系统A中实现就可以&#xff0c;了解其中实现的细节&#xff0c;怎么跟面试官对线等等&#xff0c;这些话术到位了之后&#xff0c;再把它融入到系统B&a…...

ARP欺骗的多种手法

学习参考&#xff1a; ARP欺骗的各种d玩法-CSDN博客 https://juejin.cn/post/7383702153892954164 一、什么是ARP欺骗 1.什么是ARP&#xff1f; ARP (Address Resolution Protocol) 是一种网络层协议&#xff0c;用于将 IP 地址转换为物理地址&#xff08;MAC 地址&#xff0…...

HCIA——one

推荐电影&#xff1a;《模仿游戏》《黑客帝国》《头号玩家》 图灵机每秒五千次计算&#xff0c;当今计算机4080ti算力每秒21万亿次的计算。 OSI七层模型 应用层&#xff1a;人机交互&#xff0c;将抽象语言转换成编码 表示层&#xff1a;将编码转换成二进制 介质访问控制层…...

【vue】⾃定义指令+插槽+商品列表案例

代码获取 07-⾃定义指令插槽商品列表案例 ⼀、⾃定义指令 1. 基本使⽤ 1.1 指令介绍 内置指令&#xff1a;v-model、v-for、v-bind、v-on… 这都是Vue给咱们内置的⼀些指令&#xff0c;可以直接使⽤ ⾃定义指令&#xff1a;同时Vue也⽀持让开发者&#xff0c;⾃⼰注册⼀些…...

多线程——线程的等待通知

目录 前言 一、wait() 方法 1.方法介绍 2.代码示例 3.wait 和 sleep 的区别 二、notify() 方法 1.方法介绍 2.代码示例 三、notifyAll() 方法 1.方法介绍 2.代码示例 结尾 前言 由于线程之间是抢占式执行的&#xff0c;因此线程之间的执行顺序是难以预知的&#xf…...

模态与非模态的对话框

本文学习自&#xff1a; 《Qt Creato快速入门》 #include "widget.h" #include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); }1. #include "widget.h" #include "ui_w…...

C语言练习

题目&#xff1a; 1.运用switch选择语句&#xff0c;编写一段C语言&#xff0c;请根据输入的数字&#xff0c;显示相应的星期日&#xff0c;如果数字所对应的星期日并不存在请显示“抱歉&#xff0c;您输入的内容并不存在。” 分析&#xff1a;1.在本题中&#xff0c;要运用到…...

CyberRt实践之Hello Apollo(Apollo 9.0版本)

apollo9.0环境安装参考官方网站 apollo.baidu.com/community/Apollo-Homepage-Document?docBYFxAcGcC4HpYIbgPYBtXIHQCMEEsATAV0wGNkBbWA5UyRFdZWVBEAU0hFgoIH0adPgCY%2BADwCiAVnEAhAILiAnABZxEgOzK1Y%2BQA51M3ROUnJBsbK2WZoyUdkBhcXoAMhlwDFlARnUXZdzE9AGY%2BbFINADYpUhCEFW…...

【JavaScript】LeetCode:61-65

文章目录 61 课程表62 实现Trie&#xff08;前缀树&#xff09;63 全排列64 子集65 电话号码的字母组合 61 课程表 Map BFS拓扑排序&#xff1a;将有向无环图转为线性顺序。遍历prerequisites&#xff1a;1. 数组记录每个节点的入度&#xff0c;2. 哈希表记录依赖关系。n 6&a…...

【SpringAI】(一)从实际场景入门大模型——适合Java宝宝的大模型应用开发

一、简单场景介绍 假设你需要为一个商城项目接入一个基于SpringAI的智能客服系统&#xff0c;现在我们来基本模拟一下&#xff1a; 当我通过系统提问&#xff0c;大模型会针对我的问题进行回答。 当我们通过程序提问时&#xff0c;SpringAI会将我们的提问封装成Prompts&#x…...

植物大战僵尸杂交版

最新版植物大战僵尸杂交版 最近本款游戏火爆 下载资源如下&#xff1a; win版本&#xff1a;2.3.7 链接&#xff1a;下载地址 提取码&#xff1a;9N3P Mac&#xff08;苹果版本&#xff09;&#xff1a;2.0.0 链接&#xff1a;下载地址 提取码&#xff1a;Bjaa 介绍&#xff…...

live2d 实时虚拟数字人形象页面显示,对接大模型

live2dSpeek 测试不用gpu可以正常运行 https://github.com/lyz1810/live2dSpeek 运行的话还需要额外下载https://github.com/lyz1810/edge-tts支持语音 ## 运行live2dSpeek >npm install -g http-server >http-server . ## 运行edge-tts python edge-tts.py...

SpringCloud-持久层框架MyBatis Plus的使用与原理详解

在现代微服务架构中&#xff0c;SpringCloud 是一个非常流行的解决方案。而在数据库操作层面&#xff0c;MyBatis Plus 作为 MyBatis 的增强工具&#xff0c;能够简化开发&#xff0c;提升效率&#xff0c;特别是在开发企业级应用和分布式系统时尤为有用。本文将详细介绍 MyBat…...

Servlet的HttpServletRequest

HttpServletRequest是Java Servlet规范中定义的一个接口&#xff0c;它表示客户端向服务器发送的请求&#xff0c;并提供了与HTTP请求相关的方法和属性。 getSession方法()&#xff1a;用于获取与当前请求相关联的HttpSession对象。 setAttribute(String name, Object value)…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

Linux基础开发工具——vim工具

文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...

以太网PHY布局布线指南

1. 简介 对于以太网布局布线遵循以下准则很重要&#xff0c;因为这将有助于减少信号发射&#xff0c;最大程度地减少噪声&#xff0c;确保器件作用&#xff0c;最大程度地减少泄漏并提高信号质量。 2. PHY设计准则 2.1 DRC错误检查 首先检查DRC规则是否设置正确&#xff0c;然…...

简单聊下阿里云DNS劫持事件

阿里云域名被DNS劫持事件 事件总结 根据ICANN规则&#xff0c;域名注册商&#xff08;Verisign&#xff09;认定aliyuncs.com域名下的部分网站被用于非法活动&#xff08;如传播恶意软件&#xff09;&#xff1b;顶级域名DNS服务器将aliyuncs.com域名的DNS记录统一解析到shado…...

无头浏览器技术:Python爬虫如何精准模拟搜索点击

1. 无头浏览器技术概述 1.1 什么是无头浏览器&#xff1f; 无头浏览器是一种没有图形用户界面&#xff08;GUI&#xff09;的浏览器&#xff0c;它通过程序控制浏览器内核&#xff08;如Chromium、Firefox&#xff09;执行页面加载、JavaScript渲染、表单提交等操作。由于不渲…...

【Axure高保真原型】图片列表添加和删除图片

今天和大家分享图片列表添加和删除图片的原型模板&#xff0c;效果包括&#xff1a; 点击图片列表的加号可以显示图片选择器&#xff0c;选择里面的图片&#xff1b; 选择图片后点击添加按钮&#xff0c;可以将该图片添加到图片列表&#xff1b; 鼠标移入图片列表的图片&…...