当前位置: 首页 > news >正文

`concurrent.futures` 是 Python 标准库中的一个模块

先来看文档

在这里插入图片描述

concurrent.futures 是 Python 标准库中的一个模块,它提供了一个高级接口来异步执行代码,使用线程或进程池来并行运行任务。这个模块提供了两种主要的池类型:ThreadPoolExecutorProcessPoolExecutor,以及一个通用的 Executor 接口。此外,Executor 接口中的 submit 方法用于提交任务给执行器执行。

1. ThreadingPoolExecutor

ThreadPoolExecutor 使用线程池来并行执行任务。由于线程共享同一个进程的内存空间,因此线程间通信和共享数据相对容易,但这也意味着它们不能充分利用多核处理器的优势,因为 Python 的全局解释器锁(GIL)限制了同一时间只有一个线程可以执行 Python 字节码。

2. ProcessPoolExecutor

ProcessPoolExecutor 使用进程池来并行执行任务。每个进程都有自己独立的内存空间,因此它们可以绕过 GIL,充分利用多核处理器的优势。然而,进程间通信和共享数据比线程间要复杂和昂贵。

3. Executor.submit

submit 方法是 Executor 接口的一部分,用于提交一个可调用的对象(通常是函数)给执行器执行。它返回一个 Future 对象,这个对象可以用来查询任务的状态、获取任务的返回值或取消任务。

示例

使用 ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor
import timedef task(n):time.sleep(2)return n * nwith ThreadPoolExecutor(max_workers=3) as executor:futures = [executor.submit(task, i) for i in range(10)]for future in futures:print(future.result())

在这个例子中,我们创建了一个 ThreadPoolExecutor,其最大工作线程数为 3。然后,我们提交了 10 个任务给执行器,每个任务调用 task 函数,并等待每个任务完成,打印其返回值。

使用 ProcessPoolExecutor
from concurrent.futures import ProcessPoolExecutor
import osdef task(n):return os.getpid(), n * nwith ProcessPoolExecutor(max_workers=3) as executor:futures = [executor.submit(task, i) for i in range(10)]for future in futures:pid, result = future.result()print(f"PID: {pid}, Result: {result}")

在这个例子中,我们创建了一个 ProcessPoolExecutor,其最大工作进程数为 3。每个任务调用 task 函数,返回当前进程的 PID 和 n * n 的结果。我们打印每个任务的进程 ID 和结果,以展示任务是在不同的进程中执行的。

总结

  • ThreadPoolExecutor 适用于 I/O 密集型任务,因为线程间通信成本低。
  • ProcessPoolExecutor 适用于 CPU 密集型任务,因为它可以绕过 GIL,充分利用多核处理器。
  • submit 方法用于提交任务给执行器,并返回一个 Future 对象用于查询任务状态或获取结果。

concurrent.futures 模块中,submit 函数是 Executor 接口的一部分,用于提交一个可调用的对象(如函数)给执行器(如 ThreadPoolExecutorProcessPoolExecutor)异步执行。以下是对 submit 函数参数的详细说明,以及为何 name=value 时是实参,而 **kwargs 是形参的解释。

submit 函数的参数

submit 函数的定义通常如下:

submit(fn, *args, **kwargs)
  • fn:这是需要异步执行的函数。它应该是一个可调用的对象,如函数、方法或实现了 __call__ 方法的类的实例。
  • *args:这是传递给 fn 函数的位置参数。*args 允许你传递任意数量的位置参数给 fn
  • **kwargs:这是传递给 fn 函数的关键字参数。**kwargs 允许你传递任意数量的关键字参数给 fn,这些参数在函数调用时以 name=value 的形式传递。

实参(Actual Arguments)与形参(Formal Parameters)

  • 实参:在函数调用时传递给函数的实际值。在 submit 函数的上下文中,当你使用 name=value 的形式传递参数时,这些 name=value 对就是实参。例如,在 executor.submit(my_function, x=10, y=20) 中,x=10y=20 就是实参。

  • 形参:在函数定义中声明的参数。在 submit 函数被调用的函数 fn 的上下文中,fn 函数定义中声明的参数就是形参。例如,如果 fn 定义为 def my_function(x, y),则 xy 就是形参。

当你使用 **kwargssubmit 函数中传递参数时,这些参数以关键字参数的形式传递给 fn 函数。由于 **kwargssubmit 函数定义中是一个形参(它接受任意数量的关键字参数),而这些关键字参数在 submit 被调用时成为传递给 fn 函数的实参。

示例

假设我们有一个简单的函数 my_function,它接受两个参数 xy,并返回它们的和:

def my_function(x, y):return x + y

我们可以使用 ThreadPoolExecutorsubmit 函数来异步调用 my_function

from concurrent.futures import ThreadPoolExecutorwith ThreadPoolExecutor(max_workers=1) as executor:future = executor.submit(my_function, x=10, y=20)  # 这里 x=10, y=20 是实参result = future.result()  # 获取异步执行的结果print(result)  # 输出: 30

在这个例子中,x=10y=20 是传递给 my_function 的实参,而 xymy_function 的形参。**kwargssubmit 函数中允许我们以关键字参数的形式传递这些实参给 my_function

相关文章:

`concurrent.futures` 是 Python 标准库中的一个模块

先来看文档 concurrent.futures 是 Python 标准库中的一个模块,它提供了一个高级接口来异步执行代码,使用线程或进程池来并行运行任务。这个模块提供了两种主要的池类型:ThreadPoolExecutor 和 ProcessPoolExecutor,以及一个通用的…...

PicoQuant GmbH公司Dr. Christian Oelsner到访东隆科技

昨日,德国PicoQuant公司的光谱和显微应用和市场专家Dr.Christian Oelsner莅临武汉东隆科技有限公司。会议上Dr. Christian Oelsner就荧光寿命光谱和显微技术的最新研究和应用进行了深入的交流与探讨。此次访问不仅加强了两家公司在高科技领域的合作关系,…...

leetcode128最长连续序列 golang版

题目描述 题目:给定一个未排序的整数数组 nums 找出数字连续的最长序列,不要求序列 元素在原数组中连续 的长度 请你设计并实现时间复杂度为On的算法解决此问题 示例 1: 输入:nums [100,4,200,1,3,2] 输出:4 解释&…...

【OpenCV】(六)—— 阈值处理

阈值处理(Thresholding)用于将灰度图像转换为二值图像。通过设定一个或多个阈值,可以将图像中的像素分为不同的类别,通常用于分割前景和背景、简化图像、去除噪声等任务。OpenCV 提供了多种阈值处理方法,下面介绍基本阈…...

重学SpringBoot3-集成Redis(九)之共享Session

更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ 重学SpringBoot3-集成Redis(九)之共享Session 1. 为什么需要 Session 共享2. Spring Session 和 Redis 的集成2.1. 引入依赖2.2. 配置 Redis 连接…...

Linux:信号保存与处理

使用kill -l命令查看信号: 信号量和信号确实一点关系没有 信号是操作系统发出的进程与进程之间的通知于中断,是进程之间时间异步通知的一种方式 先了解同步通信:同步通信是一种比特同步通信技术,要求发收双方具有同频同相的同步…...

工具方法 - 可选的一些AI聊天机器人

1, ChatGPT OpenAI https://chatgpt.com/ 2, Microsoft Copilot Microsoft Copilot: 你的 AI 助手 Microsoft Copilot: 你的 AI 助手 3, HuggingChat Hugging Face – The AI community building the future. https://huggingface.co/ https://huggingface.co/chat/ 4,…...

YOLOv11改进策略【卷积层】| CVPR-2023 ScConv:即插即用,减少冗余计算并提升特征学习

一、本文介绍 本文记录的是利用ScConv优化YOLOv11的目标检测网络模型。深度神经网络中存在大量冗余,不仅在密集模型参数中,而且在特征图的空间和通道维度中。ScConv模块通过联合减少卷积层中空间和通道的冗余,有效地限制了特征冗余,本文利用ScConv模块改进YOLOv11,提高了…...

总结拓展十四:批次管理(2)

1、批次管理后台配置 1.1 批次管理级别配置(T-code:OMTC) ——路径:IMG->后勤-常规->批次管理->指定级别并激活状态管理 1.2 批次状态管理配置(T-code:OMTC) ——路径:IMG->后勤-常规->批次管理->指定级别并激活状态管理 批状态管…...

架构设计笔记-18-安全架构设计理论与实践

知识要点 常见的安全威胁: 信息泄露:信息被泄露或透露给某个非授权的实体。破坏信息的完整性:数据被非授权地进行增删、修改或破坏而受到损失。拒绝服务:对信息或其他资源的合法访问被无条件地阻止。攻击者向服务器发送大量垃圾…...

Python网络爬虫

随着互联网的迅猛发展,数据成为了新的“石油”。人们对于信息的需求日益增涨,尤其是在市场分析、学术研究和数据挖掘等领域。网络爬虫作为一种自动提取网络数据的技术,因其强大的能力而备受关注。而Python,凭借其简洁的语法和丰富…...

38. 外观数列

目录 一、问题描述 二、解题思路 三、代码 四、复杂度分析 一、问题描述 「外观数列」是一个数位字符串序列,由递归公式定义: countAndSay(1) "1"countAndSay(n) 是 countAndSay(n-1) 的行程长度编码。 行程长度编码(RLE&am…...

Android中的三种数据存储方式

目录 1.文件存储 1)内部存储 1--MODE_PRIVATE: 2--MODE_APPEND: 3--MODE_WORLD_READABLE: 4--MODE_WORLD_WRITEABLE: 5--简单使用 3)外部存储 4)内部读取 4)外部读取 2.SharePreferences存储 1)基本概念 2&#xff09…...

VS2022中Qt环境配置步骤

VS2022中Qt环境配置步骤 一、安装QT 下载QT:从QT官网上下载QT,在安装过程中,可以根据自己的需求选择适合的QT版本。若不确定,建议选择最新版本,这有助于提高开发效率。 二、安装Visual Studio 2022 选择组件&#…...

【前端】 常用的版本控制符号汇总

前端的版本控制符主要用于管理前端项目中依赖包的版本。它们通常在package.json文件中定义,帮助开发者指定所需的库和框架的版本范围。以下是一些关键概念: 版本控制符号详解: 1. 依赖管理 在前端开发中,依赖管理工具&#xff…...

OWASP Top 10 漏洞详解:基础知识、面试常问问题与实际应用

OWASP(开放式Web应用程序安全项目)是一个全球性非营利组织,致力于提高软件安全性。OWASP Top 10 是其发布的十大Web应用程序安全风险列表,广泛应用于安全领域的学习和实践。本文将详细介绍OWASP Top 10 漏洞的基础知识、面试常见问…...

实景三维赋能自然资源精细化管理创新

在自然资源管理领域,如何实现精细化、高效化管理一直是我们面临的挑战。随着实景三维技术的兴起,这一挑战迎来了新的解决方案。今天,我们将探讨实景三维技术如何赋能自然资源的精细化管理。 1. 实景三维技术概述 实景三维技术是一种集成了遥…...

Science Robotics 通过新材料打造FiBa软机器人 可实现四种形态进化

近几年由于材料科学的进步,软机器人相关技术近几年研究成果显著,与传统的刚性机器人相比,软机器人的设计灵感来源于自然界中的生物系统,如蠕虫、章鱼、壁虎和青蛙等。这些生物利用柔软、有弹性的材料,在复杂环境中展现…...

C++ 的特性可以不用在主函数中调用

写完代码,都找不到从哪里进去...

香港大学神作 LightRAG 横空出世!AI 检索生成系统革命,秒懂复杂信息,动态数据无所遁形!

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦! 微信订阅号|搜一搜&…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

浅谈不同二分算法的查找情况

二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况&#xf…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...