当前位置: 首页 > news >正文

Fast CRC32

链接: Fast CRC32

Error Checking

Real life data tends to get corrupted because machines (and humans) are never as reliable as we wish for. One efficient way is make sure your data wasn't unintendedly modifiied is to generate some kind of hash. That hash shall be unique, compact and efficient:

  • unique: any kind of modification to the data shall generate a different hash
  • compact: as few bits or bytes as possible to keep the overhead low
  • efficient: use little computing resources, i.e. fast and low memory usage

Many protocols, like Ethernet and GZIP archives, append a so-called CRC hash to their data streams which has a few weaknesses regarding uniqueness (sometimes data modifications remain undetected) but is absolutely great when it comes to compactness (CRC32: 32 bits) and efficiency. You find a CRC32 right below every Download button on my blog, too.

There is one very useful property of CRC32: it can be implemented as a rolling algorithm. That means, if you already have some chunk of data and its CRC, then you can append new data and compute the updated CRC but using your original CRC as a seed and just scanning through the appended data.

I don't want to go into mathematical details of Cyclic Redundancy Checking because there are tons of information on the internet, e.g. Wikipedia and the Painless Guide To CRC Error Detection Algorithms. This article only discusses how to write a fast CRC32 algorithm in C/C++.

If you aren't too keen on technical details and just want to have the fastest implementation for not-too-small datasets, I strongly recommend using the crc32_fast function.

Note: The concepts behind the various CRC32 algorithm are not my original work - I only gathered them in one place.

相关文章:

Fast CRC32

链接: Fast CRC32 Error Checking Real life data tends to get corrupted because machines (and humans) are never as reliable as we wish for. One efficient way is make sure your data wasnt unintendedly modifiied is to generate some kind of hash. T…...

生成一个带有二维数据和对应标签的螺旋形数据集(非线性可分数据集)的代码解析

def create_dataset():np.random.seed(1)m 400 # 数据量N int(m/2) # 每个标签的实例数D 2 # 数据维度X np.zeros((m,D)) # 数据矩阵Y np.zeros((m,1), dtypeuint8) # 标签维度a 4 for j in range(2):ix range(N*j,N*(j1))t np.linspace(j*3.12,(j1)*3.12,N) np.rando…...

PHP unset() 函数的作用

PHP 中的 unset() 函数用于销毁指定的变量。具体来说,它会解除变量名与其数据之间的关联,从而释放该变量所占用的内存。不过需要注意的是,unset() 并不是删除变量的内容,而是取消对变量名的引用。如果变量是数组中的某个元素或者对…...

长篇故事可视化方法Story-Adapter:能够生成更高质量、更具细腻交互的故事图像,确保每一帧都能准确地传达故事情节。

今天给大家介绍一个最新的长篇故事可视化方法Story-Adapter,它的工作原理可以想象成一个画家在创作一幅长画卷。首先,画家根据故事的文本提示画出初步的图像。这些图像就像是画卷的草图。接下来,画家会不断回顾这些草图,逐步添加细…...

C++基础面试题 | 什么是C++中的运算符重载?

文章目录 回答重点:示例: 运算符重载的基本规则和注意事项: 回答重点: C的运算符重载是指可以为自定义类型(如类或结构体)定义运算符的行为,使其像内置类型一样使用运算符。通过重载运算符&…...

深入 IDEA 字节码世界:如何轻松查看 .class 文件?

前言: 作为一名 Java 开发者,理解字节码对于优化程序性能、调试错误以及深入了解 JVM 运行机制非常重要。IntelliJ IDEA 作为最流行的开发工具之一,为开发者提供了查看 .class 文件字节码的功能。在本文中,我将带你一步步探索如何…...

NodeJS 利用代码生成工具编写GRPC

生成的 gRPC 代码优点 自动化和效率: 减少手动编码:生成代码自动处理了消息的序列化和反序列化、服务接口的定义等,减少了手动编码的工作量。一致性:生成的代码确保了客户端和服务器之间的一致性,避免了手动编码可能带来的错误。跨语言支持: 多语言兼容:gRPC 支持多种编…...

uni-app基础语法(一)

我们今天的学习目标 基础语法1. 创建新页面2.pages配置页面3.tabbar配置4.condition 启动模式配置 基础语法 1. 创建新页面 2.pages配置页面 属性类型默认值描述pathString配置页面路径styleObject配置页面窗口表现,配置项参考pageStyle 我们来通过style修改页面的…...

Linux:进程控制(三)——进程程序替换

目录 一、概念 二、使用 1.单进程程序替换 2.多进程程序替换 3.exec接口 4.execle 一、概念 背景 当前进程在运行的时候,所执行的代码来自于自己的源文件。使用fork创建子进程后,子进程执行的程序中代码内容和父进程是相同的,如果子进…...

LeetCode279:完全平方数

题目链接&#xff1a;279. 完全平方数 - 力扣&#xff08;LeetCode&#xff09; 代码如下 class Solution { public:int numSquares(int n) {vector<int> dp(n 1, INT_MAX);dp[0] 0;for(int i 1; i * i < n; i){for(int j i * i; j < n; j){dp[j] min(dp[j …...

python爬虫--某动漫信息采集

python爬虫--tx动漫 一、采集主页信息二、采集详情页信息三、代码供参考一、采集主页信息 略。 二、采集详情页信息 如上图所示,使用xpath提取详情页的标题、作者、评分、人气、评论人数等数据。 三、代码供参考 import csv import time import random import requests fr…...

使用Rollup.js快速开始构建一个前端项目

Rollup 是一个用于 JavaScript 项目的模块打包器&#xff0c;它将小块代码编译成更大、更复杂的代码&#xff0c;例如库或应用程序。Rollup 对代码模块使用 ES6 模块标准&#xff0c;它支持 Tree-shaking&#xff08;摇树优化&#xff09;&#xff0c;可以剔除那些实际上没有被…...

10.15学习

1.程序开发的步骤 定义程序的目标→设计程序→编写代码&#xff08;需要选择语言&#xff0c;一种语言对应一种编译器&#xff09;→编译→运行程序→测试和调试程序→维护和修改程序 2.ANSI/ISO C标准 1989年ANSI批准通过&#xff0c;1990年ISO批准通过&#xff0c;因此被称…...

mongodb-7.0.14分片副本集超详细部署

mongodb介绍&#xff1a; 是最常用的nosql数据库&#xff0c;在数据库排名中已经上升到了前六。这篇文章介绍如何搭建高可用的mongodb&#xff08;分片副本&#xff09;集群。 环境准备 系统系统 BC 21.10 三台服务器&#xff1a;192.168.123.247/248/249 安装包&#xff1a…...

C++运算出现整型溢出

考虑如下代码&#xff1a; int aINT_MAX; int b 1; long c ab; 这段代码没有编过&#xff01; 原因是a和b都是int型&#xff0c;相加之后会溢出。 请记住&#xff0c;c语言没有赋值&#xff0c;只有表达式&#xff0c;右侧会存在一个暂存的int保存ab的值&#xff0c;而明…...

LeetCode岛屿数量

题目描述 给你一个由 1&#xff08;陆地&#xff09;和 0&#xff08;水&#xff09;组成的的二维网格&#xff0c;请你计算网格中岛屿的数量。 岛屿总是被水包围&#xff0c;并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。 此外&#xff0c;你可以假设该网…...

Karmada核心概念

以下内容为翻译&#xff0c;原文地址 Karmada 是什么&#xff1f; | karmada 一、Karmada核心概念 一&#xff09;什么是Karmada 1、Karmada&#xff1a;开放&#xff0c;多云&#xff0c;多集群Kubernetes业务流程 Karmada (Kubernetes Armada)是一个Kubernetes管理系统&…...

Rust 与生成式 AI:从语言选择到开发工具的演进

在现代软件开发领域&#xff0c;Rust 语言正在逐步崭露头角&#xff0c;尤其是在高性能和可靠性要求较高的应用场景。与此同时&#xff0c;生成式 AI 的崛起正在重新塑造开发者的工作方式&#xff0c;从代码生成到智能调试&#xff0c;生成式 AI 的应用正成为提升开发效率和质量…...

Python爬虫高效数据爬取方法

大家好!今天我们来聊聊Python爬虫中那些既简洁又高效的数据爬取方法。作为一名爬虫工程师,我们总是希望用最少的代码完成最多的工作。下面我ll分享一些在使用requests库进行网络爬虫时常用且高效的函数和方法。 1. requests.get() - 简单而强大 requests.get()是我们最常用的…...

C语言之扫雷小游戏(完整代码版)

说起扫雷游戏&#xff0c;这应该是很多人童年的回忆吧&#xff0c;中小学电脑课最常玩的必有扫雷游戏&#xff0c;那么大家知道它是如何开发出来的吗&#xff0c;扫雷游戏背后的原理是什么呢&#xff1f;今天就让我们一探究竟&#xff01; 扫雷游戏介绍 如下图&#xff0c;简…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

倒装芯片凸点成型工艺

UBM&#xff08;Under Bump Metallization&#xff09;与Bump&#xff08;焊球&#xff09;形成工艺流程。我们可以将整张流程图分为三大阶段来理解&#xff1a; &#x1f527; 一、UBM&#xff08;Under Bump Metallization&#xff09;工艺流程&#xff08;黄色区域&#xff…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...

中国政务数据安全建设细化及市场需求分析

(基于新《政务数据共享条例》及相关法规) 一、引言 近年来,中国政府高度重视数字政府建设和数据要素市场化配置改革。《政务数据共享条例》(以下简称“《共享条例》”)的发布,与《中华人民共和国数据安全法》(以下简称“《数据安全法》”)、《中华人民共和国个人信息…...

数据库管理与高可用-MySQL故障排查与生产环境优化

目录 #1.1MySQL单案例故障排查 1.1.1MySQL常见的故障排查 1.1.2MySQL主从故障排查 #2.1MySQL优化 2.1.1硬件方面的优化 2.1.2进程方面的优化 #3.1MySQL存储引擎 3.1.1 MyISAM存储引擎 3.1.2 InnoDB存储引擎 1.1MySQL单案例故障排查 1.1.1MySQL常见的故障排查 &#xff08;1&…...

时间序列预测的机器学习方法:从基础到实战

时间序列预测是机器学习中一个重要且实用的领域&#xff0c;广泛应用于金融、气象、销售预测、资源规划等多个行业。本文将全面介绍时间序列预测的基本概念、常用方法&#xff0c;并通过Python代码示例展示如何构建和评估时间序列预测模型。 1. 时间序列预测概述 时间序列是按…...