当前位置: 首页 > news >正文

数学建模算法与应用 第10章 多元分析及其方法

目录

10.1 因子分析

Matlab代码示例:因子分析

10.2 主成分分析

Matlab代码示例:主成分分析

10.3 典型相关分析

Matlab代码示例:典型相关分析

10.4 判别分析

Matlab代码示例:线性判别分析

10.5 对应分析

Matlab代码示例:对应分析

10.6 多维尺度法

Matlab代码示例:多维尺度分析

习题 10

总结


多元分析是用于分析和解释多个变量之间关系的一组统计技术。在许多实际应用中,如市场营销、医学研究和社会科学中,变量往往不是独立的,多个变量之间可能存在复杂的相互作用。多元分析方法通过统计建模,揭示数据中隐藏的结构和规律。本章将介绍多元分析的基本概念,常用的方法包括因子分析、主成分分析、典型相关分析等,以及它们在Matlab中的应用。

10.1 因子分析

因子分析是一种数据降维技术,用于寻找观测变量背后潜在的、不可直接观测的因子。通过将多个高度相关的变量归结为少量公共因子,因子分析可以有效简化数据的复杂性。

  • 因子载荷矩阵:因子分析的结果之一,表示每个观测变量与潜在因子的关系强度。

  • 旋转方法:因子分析常使用旋转(如正交旋转、斜交旋转)来使因子更具解释性。

Matlab代码示例:因子分析
% 生成随机数据矩阵
rng(0);
X = randn(100, 5);% 使用factoran进行因子分析,提取两个因子
[Loadings, Psi] = factoran(X, 2);% 输出因子载荷矩阵
disp('因子载荷矩阵:');
disp(Loadings);

在上述代码中,我们使用factoran函数对数据进行了因子分析,并提取了两个因子,输出因子载荷矩阵。

10.2 主成分分析

主成分分析(PCA)是一种最常用的数据降维方法,通过找到一组互相正交的主成分来解释数据中的主要变化。PCA可以用于简化数据、消除多重共线性、可视化高维数据。

  • 特征值分解:PCA通过对数据协方差矩阵进行特征值分解来获得主成分。

  • 方差解释率:每个主成分解释的方差占总体方差的比例,可以用于选择适当数量的主成分。

Matlab代码示例:主成分分析
% 生成随机数据矩阵
X = randn(100, 5);% 使用pca函数进行主成分分析
[coeff, score, latent, tsquared, explained] = pca(X);% 输出前两主成分的方差解释率
disp('前两主成分的方差解释率:');
disp(explained(1:2));

在上述代码中,使用pca函数对数据进行了主成分分析,并输出了前两个主成分的方差解释率。

10.3 典型相关分析

典型相关分析(CCA)是一种用于分析两组变量之间相关性的多元统计方法。它寻找线性组合,使得两组变量之间的相关性最大化。

  • 典型变量:在CCA中,两组变量各自的线性组合被称为典型变量。

  • 典型相关系数:表示两个典型变量之间的相关性,用于衡量两组变量之间的关联强度。

Matlab代码示例:典型相关分析
% 生成两组随机数据矩阵
X = randn(100, 3);
Y = randn(100, 2);% 使用canoncorr进行典型相关分析
[A, B, r] = canoncorr(X, Y);% 输出典型相关系数
disp('典型相关系数:');
disp(r);

在上述代码中,我们使用canoncorr函数对两组数据进行了典型相关分析,并输出了典型相关系数。

10.4 判别分析

判别分析是一种用于分类的统计方法,用于根据已有数据构建分类模型,并对新观测值进行分类预测。常见的判别分析方法包括线性判别分析(LDA)和二次判别分析(QDA)。

Matlab代码示例:线性判别分析
% 生成随机数据
group1 = mvnrnd([2 2], eye(2), 50);
group2 = mvnrnd([-2 -2], eye(2), 50);
X = [group1; group2];
Y = [ones(50, 1); 2 * ones(50, 1)];% 使用fitcdiscr进行线性判别分析
LDAmodel = fitcdiscr(X, Y);% 绘制判别边界
figure;
gscatter(X(:,1), X(:,2), Y);
K = LDAmodel.Coeffs(1,2).Const;
L = LDAmodel.Coeffs(1,2).Linear;
f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
hold on;
fimplicit(f, [-5 5 -5 5]);
xlabel('特征1');
ylabel('特征2');
title('线性判别分析边界');
hold off;

在该代码中,我们使用了fitcdiscr函数对两组数据进行了线性判别分析,并绘制了分类边界。

10.5 对应分析

对应分析是一种用于分析分类数据之间关系的统计方法,通常用于处理列联表(contingency table),帮助理解变量之间的关联结构。

Matlab代码示例:对应分析
% 定义列联表
observed = [30 10 5; 15 25 20; 5 20 35];% 使用matlab中的corresp函数进行对应分析
[Dim, score] = corresp(observed, 2);% 输出对应分析得分
disp('对应分析得分:');
disp(score);

上述代码中,我们定义了一个列联表,并使用corresp函数进行了对应分析,输出了各变量的得分。

10.6 多维尺度法

多维尺度法(MDS)是一种用于可视化高维数据的降维技术,它通过将数据嵌入到低维空间中来保留原数据中的距离信息,使得可以在二维或三维空间中进行可视化。

Matlab代码示例:多维尺度分析
% 生成距离矩阵
D = pdist(rand(10, 3));
D_square = squareform(D);% 使用mdscale进行多维尺度分析
Y = mdscale(D_square, 2);% 绘制二维可视化结果
figure;
scatter(Y(:,1), Y(:,2), 'filled');
xlabel('维度1');
ylabel('维度2');
title('多维尺度分析结果');

该代码展示了如何使用mdscale函数对距离矩阵进行多维尺度分析,并将结果在二维空间中进行可视化。

习题 10

在第十章结束后,提供了一些相关的习题,帮助读者深入理解多元分析方法。习题10包括:

  1. 因子分析:对给定的数据集进行因子分析,提取主要因子并解释其含义。

  2. 主成分分析:使用PCA对高维数据进行降维处理,并绘制前两个主成分的解释方差。

  3. 典型相关分析:对两组变量进行典型相关分析,解释典型相关系数的意义。

  4. 判别分析:使用线性判别分析对分类数据进行分类预测,并绘制判别边界。

  5. 多维尺度法:对一组距离矩阵进行多维尺度分析,将高维数据嵌入到二维空间中进行可视化。

通过这些习题,读者可以进一步掌握多元分析在实际中的应用,以及如何利用Matlab工具进行多元分析的建模和数据可视化。

总结

第十章介绍了多元分析的基本概念及其常用方法,包括因子分析、主成分分析、典型相关分析、判别分析和多维尺度法等。多元分析在数据挖掘和模式识别中有着重要作用,通过对多个变量之间的关系进行建模,可以帮助我们揭示数据中潜在的结构和规律。通过本章的学习,读者可以掌握多元分析的基本原理和方法,并利用Matlab进行多元数据的分析与建模。

相关文章:

数学建模算法与应用 第10章 多元分析及其方法

目录 10.1 因子分析 Matlab代码示例:因子分析 10.2 主成分分析 Matlab代码示例:主成分分析 10.3 典型相关分析 Matlab代码示例:典型相关分析 10.4 判别分析 Matlab代码示例:线性判别分析 10.5 对应分析 Matlab代码示例&a…...

西门子828d的plc一些信息记录

1、虽然是200的plc但是引入了DB的形式替代原来的V存储区。 2、用户自定义DB块范围,DB9000-DB9063,共64个DB块。 可用地址范围如上图 机床MCP483面板地址表,其它类型的面板地址自己在828d简明调试手册里查看。 如何上载828d的plc程序: 1.通…...

为啥我的Python这么慢 - 项查找 (二)

上一篇为啥我的Python这么慢, 字符串的加和和join被陈群主分享到biopython-生信QQ群时,乐平指出字典的写法存在问题,并给了一篇知乎的链接https://zhuanlan.zhihu.com/p/28738634指导如何高效字典操作。 根据那篇文章改了两处写法,如下 (存储…...

计算机毕业设计python+spark知识图谱课程推荐系统 课程预测系统 课程大数据 课程数据分析 课程大屏 mooc慕课推荐系统 大数据毕业设计

指导教师意见: 1.对“文献综述”的评语: 对教育领域数据可视化的相关背景和现状做了综述,明确了课题的研究目标和研究重点,并对研究手段进行了概述。为后面的毕业设计做好了准备。 对本课题的深度、广度及工作量的…...

阿里 C++面试,算法题没做出来,,,

我本人是非科班学 C 后端和嵌入式的。在我面试的过程中,竟然得到了阿里​ C 研发工程师的面试机会。因为,阿里主要是用 Java 比较多,C 的岗位比较少​,所以感觉这个机会还是挺难得的。 阿里 C 研发工程师面试考了我一道类似于快速…...

【自动驾驶汽车通讯协议】GMSL通信技术以及加串器(Serializer)解串器(Deserializer)介绍

文章目录 0. 前言1. GMSL技术概述2. 为什么需要SerDes?3. GMSL技术特点4.自动驾驶汽车中的应用5. 结论 0. 前言 按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但是内容可能存在不准…...

Uiautomator2与weditor配置一直报错咋办

作者在配置这两个的时候绞尽脑汁了,u2的init总是报错并且无法自动在手机上安装atx,weditor可以打开但是只要对元素操作或者任意操作就会让你去重新init,搞得作者焦头烂额,而且网上各种各样的报错信息眼花缭乱,作者几乎…...

Java后端面试题:MySQL篇

目录 MySQL基础部分 1. SELECT语句完整的执行顺序是什么? 2. 说一说内连接和外连接。 3. 请说说数据库三大范式。 4. 请你说说视图的作用,视图可以更改么? 架构 5. 请你说一说MySQL架构。 6. 请你说说一条SQL语句的执行过程&#xff…...

# Excel 操作大全

Excel 操作大全 文章目录 Excel 操作大全单元格文本换行计算SUM 单元格 文本换行 设置自动换行,在文本前面使用 AltEnter键即可换行文本前面可以输入空格实现段前缩进的效果 计算SUM 求和函数...

javascript中快速获取最大值和最小值

在 ES6 中,你可以使用 Math.max 和 Math.min 函数来获取一组数字中的最大值和最小值。这两个函数都接受一个可变数量的参数,并返回这些参数中的最大值或最小值。 以下是一个示例: const numbers [1, 2, 3, 4, 5];const max Math.max(...n…...

git merge啥意思

git merge 是 Git 中的一个命令,用于将一个分支的更改合并到另一个分支中。当你在一个项目中有多个开发人员同时工作,或者你在不同的特性分支上开发新功能时,git merge 命令就非常有用。它可以帮助你将不同分支上的更改整合在一起。 git mer…...

Web编程---Servlet技术

文章目录 一、目的二、原理三、过程1. TestServlet02文件演示效果2. TestServlet03文件演示效果3. TestServlet04与TestServlet05文件演示效果4. 控制台展示生命周期过程 四、代码web.xml文件TestServlet02.java文件TestServlet03.java文件TestServlet04.java文件TestServlet05…...

【cocos creator】输入框滑动条联动小组建

滑动条滑动输入框内容会改变 输入框输入,滑动条位置改变 const { ccclass, property } cc._decorator;ccclass() export default class SliderEnter extends cc.Component {property({ type: cc.Float, displayName: "最大值", tooltip: "" }…...

Flink时间窗口程序骨架结构

前言 Flink 作业的基本骨架结构包含三部分:创建执行环境、定义数据处理逻辑、提交并执行Flink作业。 日常大部分 Flink 作业是基于时间窗口计算模型的,同样的,开发一个Flink时间窗口作业也有一套基本的骨架结构,了解这套结构有助…...

计算机视觉之可做什么

1、计算机视觉的应用 计算机视觉在我们生活中已经有了很广泛的应用,在我们可见、不可见;可感知、不可感知的地方,深深地影响了我们的生活、生产方式。 日常生活:美颜相机、火车站刷脸进站、线上办理业务的身份认证、自动驾驶等等…...

观察者模式的思考

观察者模式由来 观察者模式(Observer Pattern)是一种行为型设计模式,它的起源可以追溯到20世纪90年代初,由设计模式四人帮(Erich Gamma, Richard Helm, Ralph Johnson 和 John Vlissides)在其著作《设计模…...

ORACLE SELECT INTO 赋值为空,抛出 NO DATA FOUND 异常

例子: DECLARE ORDER_NUM VARCHAR2(20); BEGIN SELECT S.ORDER_NUM INTO ORDER_NUM FROM SALES_ORDER S WHERE S.ID122344; DBMS_OUTPUT.PUT_LINE(单号: || ORDER_NUM); END; 在查询结果为空的情况下,以上代码会报错:未找到任何数据 解决方…...

GPT提示词

参考 提示词大全: GPT提示词大全(中英文双语)持续更新 提示词.com...

Redis协议详解及其异步应用

目录 一、Redis Pipeline(管道)概述优点使用场景工作原理Pipeline 的基本操作步骤C 示例(使用 [hiredis](https://github.com/redis/hiredis) 库) 二、Redis 事务概述事务的前提事务特征(ACID 分析)WATCH 命…...

LeetCode213:打家劫舍II

题目链接&#xff1a;213. 打家劫舍 II - 力扣&#xff08;LeetCode&#xff09; 代码如下 class Solution { public:int rob(vector<int>& nums) {if(nums.size() 0) return 0;if(nums.size() 1) return nums[0];if(nums.size() 2) return max(nums[0…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...