区间动态规划
区间动态规划(Interval DP)是动态规划的一种重要变种,特别适用于解决一类具有区间性质的问题。典型的应用场景是给定一个区间,要求我们在满足某些条件下进行最优划分或合并。本文将从区间DP的基本思想、常见问题模型以及算法实现几个方面展开讨论,帮助你理解如何应用区间DP解决复杂问题。
1. 区间动态规划的基本思想
区间动态规划的核心思想是:对于一个长度为 (n) 的序列或区间,定义状态 (dp[l][r]) 表示在区间 ([l, r]) 上的最优解(根据问题的不同,最优解可以是最大值、最小值、或是某种收益)。通过将较大的区间划分为更小的区间,并利用较小区间的最优解来推导出较大区间的最优解,逐步求解最终问题。
常用递推形式
在区间动态规划中,通常我们会使用三层循环:
- 区间长度:从较短的区间逐渐扩展到整个区间。
- 左端点:根据当前的区间长度,从左向右遍历区间的起点。
- 分割点:对当前区间尝试所有可能的分割方式,进而计算合并后的最优值。
一般递推公式为:
[ dp[l][r] = \min/\max { dp[l][k] + dp[k+1][r] + \text{cost}(l, r) \mid l \leq k < r } ]
其中,(\text{cost}(l, r)) 是将两个子区间合并成区间 ([l, r]) 时的代价,具体形式依赖于具体问题。
2. 区间DP的常见问题模型
以下是一些常见的区间DP问题,以及它们的建模和解法。
2.1 石子合并问题
问题描述:给定一个长度为 (n) 的数组,代表 (n) 堆石子,每次可以将相邻的两堆石子合并,合并的代价是两堆石子的总和。求将所有石子合并成一堆的最小代价。
状态定义:
- ( dp[i][j] ) 表示将区间 ([i, j]) 上的石子合并成一堆的最小代价。
- 初始时,( dp[i][i] = 0 ),因为单独一堆石子没有合并的代价。
状态转移方程:
[ dp[i][j] = \min_{i \leq k < j} { dp[i][k] + dp[k+1][j] + \text{sum}(i, j) } ]
其中,(\text{sum}(i, j)) 是区间 ([i, j]) 内所有石子的总和。
2.2 矩阵连乘问题
问题描述:给定 (n) 个矩阵,求将这些矩阵按给定顺序全部相乘所需的最小运算次数。
状态定义:
- ( dp[i][j] ) 表示将第 (i) 到第 (j) 个矩阵相乘所需的最小运算次数。
状态转移方程:
[ dp[i][j] = \min_{i \leq k < j} { dp[i][k] + dp[k+1][j] + \text{cost}(i, j) } ]
其中,(\text{cost}(i, j)) 是矩阵链 (A[i] \times A[i+1] \times … \times A[j]) 的相乘代价。
2.3 回文串分割问题
问题描述:给定一个字符串,求最少将其分割成若干个回文子串。
状态定义:
- ( dp[i][j] ) 表示将区间 ([i, j]) 上的字符串分割成回文子串所需的最少分割次数。
状态转移方程:
[ dp[i][j] = \min_{i \leq k < j} { dp[i][k] + dp[k+1][j] } ]
其中,如果字符串 ([i, j]) 本身是一个回文,则 (dp[i][j] = 0)。
3. 区间DP的实现步骤
要实现区间DP,通常需要遵循以下几个步骤:
- 定义状态:明确状态 (dp[l][r]) 的含义。
- 初始化:根据问题的初始条件,设定边界值。
- 状态转移:通过遍历区间长度、左端点和分割点,逐步推导出更大区间的最优解。
- 返回结果:根据问题要求返回最终的最优解。
代码示例:石子合并问题
#include <iostream>
#include <vector>
#include <climits>
using namespace std;const int MAXN = 100;
int stones[MAXN]; // 石子重量
int dp[MAXN][MAXN]; // dp数组
int prefixSum[MAXN]; // 前缀和,用于快速计算区间和// 求解石子合并问题的最小代价
int minMergeCost(int n) {// 计算前缀和for (int i = 1; i <= n; ++i) {prefixSum[i] = prefixSum[i - 1] + stones[i];}// 区间DPfor (int len = 2; len <= n; ++len) { // 区间长度for (int i = 1; i + len - 1 <= n; ++i) {int j = i + len - 1;dp[i][j] = INT_MAX;for (int k = i; k < j; ++k) {dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + prefixSum[j] - prefixSum[i - 1]);}}}return dp[1][n]; // 返回合并整个区间的最小代价
}int main() {int n;cout << "输入石子堆的数量:";cin >> n;cout << "输入每堆石子的重量:";for (int i = 1; i <= n; ++i) {cin >> stones[i];}cout << "最小合并代价:" << minMergeCost(n) << endl;return 0;
}
4. 总结
区间动态规划是一种解决区间问题的强大工具,它通过将大区间划分为小区间,逐步解决问题。常见的区间DP问题包括石子合并、矩阵连乘和回文串分割等。在实际应用中,理解问题的区间结构、合理定义状态和状态转移方程是解决区间DP问题的关键。
通过不断练习和思考,你会发现区间DP在许多复杂问题中都能发挥作用,并且能有效提升你的算法设计能力。
相关文章:

区间动态规划
区间动态规划(Interval DP)是动态规划的一种重要变种,特别适用于解决一类具有区间性质的问题。典型的应用场景是给定一个区间,要求我们在满足某些条件下进行最优划分或合并。本文将从区间DP的基本思想、常见问题模型以及算法实现几…...

什么情况下需要使用电压探头
高压探头是一种专门设计用于测量高压电路或设备的探头,其作用是在电路测试和测量中提供安全、准确的信号捕获,并确保操作人员的安全。这些探头通常用于测量高压电源、变压器、电力系统、医疗设备以及其他需要处理高电压的设备或系统。 而高压差分探头差分…...

数据结构——八大排序(下)
数据结构中的八大排序算法是计算机科学领域经典的排序方法,它们各自具有不同的特点和适用场景。以下是这八大排序算法的详细介绍: 五、选择排序(Selection Sort) 核心思想:每一轮从未排序的元素中选择最小࿰…...

Linux系统:Ubuntu上安装Chrome浏览器
Ubuntu系统版本:23.04 在Ubuntu系统上安装Google Chrome浏览器,可以通过以下步骤进行: 终端输入以下命令,先更新软件源: sudo apt update 或 sudo apt upgrade终端输入以下命令,下载最新的Google Chrome .…...

Redis位图BitMap
一、为什么使用位图? 使用位图能有效实现 用户签到 等行为,用数据库表记录签到,将占用很多存储;但使用 位图BitMap,就能 大大减少存储占用 二、关于位图 本质上是String类型,最小长度8位(一个字…...

YOLOv11改进策略【卷积层】| ParNet 即插即用模块 二次创新C3k2
一、本文介绍 本文记录的是利用ParNet中的基础模块优化YOLOv11的目标检测网络模型。 ParNet block是一个即插即用模块,能够在不增加深度的情况下增加感受野,更好地处理图像中的不同尺度特征,有助于网络对输入数据更全面地理解和学习,从而提升网络的特征提取能力和分类性能…...

学习threejs,网格深度材质MeshDepthMaterial
👨⚕️ 主页: gis分享者 👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️网格深度材质MeshDepthMate…...

算法时间、空间复杂度(二)
目录 大O渐进表示法 一、时间复杂度量级的判断 定义: 例一:执行2*N+1次 例二:执行MN次 例三:执行已知次数 例四:存在最好情况和最坏情况 顺序查找 冒泡排序 二分查找 例五:阶乘递归 编辑 例…...

高级java每日一道面试题-2024年10月11日-数据库篇[Redis篇]-Redis都有哪些使用场景?
如果有遗漏,评论区告诉我进行补充 面试官: Redis都有哪些使用场景? 我回答: Redis 是一个开源的、基于键值对的数据结构存储系统,,它支持多种数据类型,包括字符串、散列、列表、集合和有序集合。它可以用作数据库、缓存和消息中间件。由于…...

0047__【python打包分发工具】setuptools详解
【python打包分发工具】setuptools详解-CSDN博客...

自定义拦截器处理token
目录 1、WebConfig 配置类 2、TSUserContext 把用户信息放到context中 3、自定义拦截器 4、在controller中可以使用 5、参考链接 1、WebConfig 配置类 @Configuration public class WebConfig implements WebMvcConfigurer {@Autowiredprivate AccessControlInterceptor …...

Scrapy | 使用Scrapy进行数据建模和请求
scrapy数据建模与请求 数据建模1.1 为什么建模1.2 如何建模1.3如何使用模板类1.4 开发流程总结 目标: 1.应用在scrapy项目中进行建模 2.应用构造Request对象,并发送请求 3.应用利用meta参数在不同的解析函数中传递数据 数据建模 | 通常在做项目的过程中…...

学习笔记——交换——STP(生成树)基本概念
三、基本概念 1、桥ID/网桥ID (Bridege ID,BID) 每一台运行STP的交换机都拥有一个唯一的桥ID(BID),BID(Bridge ID/桥ID)。在STP里我们使用不同的桥ID标识不同的交换机。 (2)BID(桥ID)组成 BID(桥ID)组成(8个字节):由16位(2字节)的桥优先级…...

机器学习笔记-2
文章目录 一、Linear model二、How to represent this function三、Function with unknown parameter四、ReLU总结、A fancy name 一、Linear model 线性模型过于简单,有很大限制,我们需要更多复杂模式 蓝色是线性模型,线性模型无法去表示…...

SpringSecurity(一)——认证实现
一、初步理解 SpringSecurity的原理其实就是一个过滤器链,内部包含了提供各种功能的过滤器。 当前系统中SpringSecurity过滤器链中有哪些过滤器及它们的顺序。 核心过滤器: (认证)UsernamePasswordAuthenticationFilter:负责处理…...

VMWare NAT 模式下 虚拟机上不了网原因排查
vmware 按照了Linux之后 无法上网,搞定后,记录一些信息。 window有两个虚拟网卡 VMnet1 对应的是 Host-Only(仅主机模式) VMnet8 对应的是 NAT(网络地址转换模式) 在NAT模式中,需要设置NAT和D…...

R语言手工实现主成分分析 PCA | 奇异值分解(svd) 与PCA | PCA的疑问和解答
几个问题: pca可以用相关系数矩阵做吗?效果比协方差矩阵比怎么样?pca做完后变量和样本的新坐标怎么旋转获得?pca做不做scale和center对结果有影响吗?pca用因子分解和奇异值分解有啥区别?后者怎么获得变量和样本的新坐标?1. 用R全手工实现 PCA(对比 prcomp() ) 不借助包…...

第三届OpenHarmony技术大会在上海成功举办
10月12日,以“技术引领筑生态,万物智联创未来”为主题的第三届OpenHarmony技术大会(以下简称“大会”)在上海成功举办。本次大会由OpenAtom OpenHarmony(以下简称“OpenHarmony”)项目群技术指导委员会&…...

数字化:IT部门主导还是业务部门主导?
在这个瞬息万变的数字化时代,企业如同在大海中航行的小船,面对波涛汹涌的市场竞争,数字化转型已成为生存的必经之路。然而,在这条充满挑战的航线上,常常会出现一个让人纠结的问题:数字化转型究竟应该由IT部…...

MySQL表的基本查询下/分组聚合统计
1,update 对查询到的结果进行列值更新,可以和older by,where,limit合并使用,为了方便讲解,将会以题目练习的方式进行说明: 1,将孙悟空同学的数学成绩变更为 80 分 本道题和where联…...

条款3: 理解decltype
目录 一、decltype + 变量 二、decltype + 表达式 三、decltype 使用场景 一、decltype + 变量 🥭 所有的信息都会保留,数组和函数也不会退化 const int &&carref = std::move(ca); decltype(carref) bb; // bb推导为const int &&,不会被忽略掉co…...

TCP:过多的TIME_WAIT
过多的TIME_WAIT 线上问题紧急处理方式tcp_tw_reuse启用主要特点:源码 线上问题 线上机器出现了几万个TIME_WAIT,怎么办? 紧急处理方式 tcp_tw_reuse 启用 默认情况下tcp_tw_reuse是关闭状态,使用sysctl -w net.ipv4.tcp_tw_…...

化学元素分子量、氧化物系数计算python类
在网上找到的分子量计算类,做了少量修改,有原子量、分子量、氧化物系数的计算。 import re wt_dict{ #该原子量数据从CRC手册第95版提取。"H": 1.008,"He": 4.002602,"Li": 6.94,"Be": 9.0121831,"B": 10.…...

torch.utils.data.DataLoader参数介绍
torch.utils.data.DataLoader 是 PyTorch 用于加载数据的重要工具,特别是在深度学习模型训练中。它可以高效地处理大规模数据集,并支持多线程数据加载。以下是 DataLoader 的关键参数及其功能: 主要参数 dataset: 要加载的数据集,可以是 PyTorch 自带的 torch.utils.data.…...

echarts 入门
工作中第一次碰到echarts,当时有大哥。二进宫没办法,只能搞定它。 感觉生活就是这样,不能解决的问题总是会反复出现。通过看视频、查资料,完成了工作要求。写一篇Hello World,进行备查。 基本使用 快速上手 <!DO…...

WPF实现类似网易云音乐的菜单切换
这里是借助三方UI框架实现了,感兴趣的小伙伴可以看一下。 深色模式: 浅色模式: 这里主要使用了以下三个包: MahApps.Metro:UI库,提供菜单导航和其它控件 实现步骤:1、使用B…...

OpenCV人脸检测与识别:构建智能识别系统
在当今科技日新月异的时代,人脸识别技术以其独特的便利性和安全性,在各个领域都展现出了巨大的应用潜力。从智能手机的面部解锁,到机场的自动安检,再到商场的顾客行为分析,人脸识别技术无处不在。本文将深入探讨如何使…...

H5 Canvas 举牌小人
之前看到这种的举牌小人的图片觉得很有意思,最近有时间所以就尝试写写看。 在线链接 https://linyisonger.github.io/H5.Examples/?name./080.Canvas%20%E4%B8%BE%E7%89%8C%E5%B0%8F%E4%BA%BA.html 生成效果 实现代码 <!DOCTYPE html> <html lang"…...

rom定制系列------小米6x_澎湃os1.0.28安卓13定制固件修改 刷写过程与界面预览
💝💝💝 在接待很多定制化系统过程中。小米6x机型为很多工作室客户使用。但官方低版本固件无法适应新应用的使用。有些第三方固件却可以完美解决。此固件是客户分享的卡刷固件。需要修改为可以批量刷写的线刷固件。去除一些内置应用。需要自带…...

电脑硬件性能:HDD + SSD + CPU + GPU
文章目录 任务管理器:性能参数详解一、电脑的硬件组成二、机械硬盘和固态硬盘2.1、详细介绍:HDD SSD2.2、读写性能2.2.1、(HDD)读写性能的影响因素:寻道时间 旋转延迟 数据传输时间2.2.2、(SSDÿ…...