当前位置: 首页 > news >正文

【进阶OpenCV】 (16)-- 人脸识别 -- FisherFaces算法

文章目录

  • FisherFaces算法
    • 一、算法原理
    • 二、算法优势与局限
    • 三、算法实现
      • 1. 图像预处理
      • 2. 创建FisherFace人脸特征识别器
      • 3. 训练模型
      • 4. 测试图像
  • 总结

FisherFaces算法

PCA方法是EigenFaces人脸识别的核心,但是其具有明显的缺点,在操作过程中会损失许多人脸的特征信息。因此在某些特殊的情况下,如果损失的信息刚好是用于分类的关键信息,必然导致结果预测错误。于是我们推出来新的方法:

FisherFaces算法,也称为线性判别分析(LDA)在人脸识别领域的应用,是一种经典且有效的人脸识别方法

一、算法原理

FisherFaces算法基于LDA技术,其核心思想是将高维的人脸图像数据投影到低维的最佳矢量空间。

  • 基本原理:在低维表示下,首先将训练集样本集投影到一条直线A上,让投影后的点满足:同类间的点尽可能地靠近异类间的点尽可能地远离,以达到抽取重要分类信息和压缩特征空间维度的效果。投影后的模式样本在新的子空间中具有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。

在这里插入图片描述

  • 具体来说:算法首先提取人脸图像的特征,这些特征可以包括人脸的形状、眼睛、嘴巴、鼻子等部位的几何特征,以及纹理、颜色等特征。然后,利用这些特征构建类内散度矩阵和类间散度矩阵类内散度矩阵反映的是同一类人脸特征的相似性,而类间散度矩阵反映的是不同类人脸特征的差异性。通过求解这两个矩阵的广义特征问题,可以得到投影系数,这些投影系数可以将原始的人脸特征投影到低维空间中

  • 实际应用中:FisherFaces算法已经广泛应用于人脸认证、人脸追踪、人脸合成等领域。

二、算法优势与局限

  1. 优势
    • 能够有效降低计算复杂度,提高识别速度。
    • 保持较高的识别准确率。
    • 对光照和表情变化具有一定的鲁棒性。
  2. 局限
    • 在处理大规模数据集时,可能需要较长的训练时间和较高的计算资源。
    • 对于极端姿态或遮挡情况下的人脸识别,效果可能不佳。

三、算法实现

1. 图像预处理

准备好训练图像以及对应的标签,还有待识别图像:

注意!!!:在使用FisherFaces算法进行人脸识别时,传入图像的大小(即尺寸)需要保持一致

因为FisherFaces算法基于线性判别分析(LDA)技术,它需要将人脸图像投影到低维空间以提取重要分类信息。在这个过程中,如果图像的大小不一致,那么转换后的矩阵或向量的维度也会不同,这将导致算法无法正确处理这些数据。此外,算法在计算类内散度矩阵和类间散度矩阵时,也需要所有输入图像的维度保持一致。

import cv2
import numpy as np
def image_re(image):a = cv2.imread(image,0)a = cv2.resize(a,(75,100))return aimages = []
a = image_re('f1.jpg')
b = image_re('f2.jpg')
c = image_re('z1.jpg')
d = image_re('z2.jpg')images.append(a)
images.append(b)
images.append(c)
images.append(d)labels = [0,0,1,1]
pre_image = image_re('f_test.jpg')

2. 创建FisherFace人脸特征识别器

recognizer = cv2.face.FisherFaceRecognizer_create()

3. 训练模型

recognizer.train(images,np.array(labels))

4. 测试图像

置信度需要低于五千才有说服力,越小越准确。

label,confidence = recognizer.predict(pre_image)
dic = {0:'yifei',1:"zrn"}
print('这人是',dic[label])
print('置信度',confidence)
aa = cv2.putText(cv2.imread('f_test.jpg').copy(),dic[label],(10,30),cv2.FONT_HERSHEY_SIMPLEX,0.9,(0,0,255),2)
cv2.imshow('xx',aa)
cv2.waitKey(0)
-------------------
这人是 yifei
置信度 1806.3739273411293

在这里插入图片描述

总结

本篇介绍了,如何通过FisherFaces算法来实现人脸识别,其中需要注意的是:

  1. 在使用EigenFaces算法进行人脸识别时,传入图像的大小(即尺寸)需要保持一致。
  2. 训练以及测试图像最好使用大头照,减少身体的部分。
  3. 置信度需要低于五千才有说服力,越小越准确。

相关文章:

【进阶OpenCV】 (16)-- 人脸识别 -- FisherFaces算法

文章目录 FisherFaces算法一、算法原理二、算法优势与局限三、算法实现1. 图像预处理2. 创建FisherFace人脸特征识别器3. 训练模型4. 测试图像 总结 FisherFaces算法 PCA方法是EigenFaces人脸识别的核心,但是其具有明显的缺点,在操作过程中会损失许多人…...

电脑主机配置

显卡: 查看显卡:设备管理器--显示适配器 RTX4060 RTX和GTX区别: GTX是NVIDIA公司旧款显卡,RTX比GTX好但是贵 处理器CPU: Intel(R) Core(TM) i5-10400F CPU 2.90GHz 2.90 GHz 10400F:10指的是第几代…...

图书借阅小程序开源独立版

图书借阅微信小程序,多书馆切换模式,书馆一键同步图书信息,开通会员即可在线借书,一书一码书馆员工手机扫码出入库从会员到书馆每一步信息把控图书借阅小程序,让阅读触手可及在这个快节奏的时代,你是否渴望…...

flutter TextField限制中文,ios自带中文输入法变英文输入问题解决

由于业务需求,要限制TextField只能输入中文,但是测试在iOS测试机发现自带中文输入法会变英文输入问题,安卓没有问题,并且只有iOS自带输入法有问题,搜狗等输入法没问题。我们目前使用flutter2.5.3版本,高版本…...

ThreadLocal的应用场景

ThreadLocal介绍 ThreadLocal为每个线程都提供了变量的副本,使得每个线程访问各自独立的对象,这样就隔离了多个线程对数据的共享,使得线程安全。ThreadLocal有如下方法: 方法声明 描述public void set(T value)设置当前线程绑定的…...

Python--plt.errorbar学习笔记

plt.errorbar 是 Matplotlib 库中的一个函数,用于绘制带有误差条的图形。下面给出的代码行的详细解释: import numpy as np from scipy.special import kv, erfc from scipy.integrate import dblquad import matplotlib.pyplot as plt import scipy.in…...

文件信息类QFileInfo

常用方法: 构造函数 //参数:文件的绝对路径或相对路径 [explicit] QFileInfo::QFileInfo(const QString &path) 设置文件路径 可构造一个空的QFileInfo的对象,然后设置路径 //参数:文件的绝对路径或相对路径 void QFileI…...

堆排序(C++实现)

参考: 面试官:请写一个堆排序_哔哩哔哩_bilibiliC实现排序算法_c从小到大排序-CSDN博客 堆的基本概念 堆排实际上是利用堆的性质来进行排序。堆可以看做一颗完全二叉树。 堆分为两类: 最大堆(大顶堆):除根…...

Qt中加入UI文件

将 UI 文件整合到 Qt 项目 使用 Qt Designer 创建 UI 文件: 在 Qt Creator 中使用 Qt Designer 创建 UI 文件,设计所需的界面。确保在设计中包含所需的控件(如按钮、文本框等),并为每个控件设置明确的对象名称&#xf…...

Redisson使用全解

redisson使用全解——redisson官方文档注释(上篇)_redisson官网中文-CSDN博客 redisson使用全解——redisson官方文档注释(中篇)-CSDN博客 redisson使用全解——redisson官方文档注释(下篇)_redisson官网…...

Go4 和对 Go 的贡献

本篇内容是根据2017年4月份Go4 and Contributing to Go音频录制内容的整理与翻译, Brad Fitzpatrick 加入节目谈论成为开源 Go 的代言人、让社区参与 bug 分类、Go 的潜在未来以及其他有趣的 Go 项目和新闻。 过程中为符合中文惯用表达有适当删改, 版权归原作者所有. Erik St…...

区间动态规划

区间动态规划(Interval DP)是动态规划的一种重要变种,特别适用于解决一类具有区间性质的问题。典型的应用场景是给定一个区间,要求我们在满足某些条件下进行最优划分或合并。本文将从区间DP的基本思想、常见问题模型以及算法实现几…...

什么情况下需要使用电压探头

高压探头是一种专门设计用于测量高压电路或设备的探头,其作用是在电路测试和测量中提供安全、准确的信号捕获,并确保操作人员的安全。这些探头通常用于测量高压电源、变压器、电力系统、医疗设备以及其他需要处理高电压的设备或系统。 而高压差分探头差分…...

数据结构——八大排序(下)

数据结构中的八大排序算法是计算机科学领域经典的排序方法,它们各自具有不同的特点和适用场景。以下是这八大排序算法的详细介绍: 五、选择排序(Selection Sort) 核心思想:每一轮从未排序的元素中选择最小&#xff0…...

Linux系统:Ubuntu上安装Chrome浏览器

Ubuntu系统版本:23.04 在Ubuntu系统上安装Google Chrome浏览器,可以通过以下步骤进行: 终端输入以下命令,先更新软件源: sudo apt update 或 sudo apt upgrade终端输入以下命令,下载最新的Google Chrome .…...

Redis位图BitMap

一、为什么使用位图? 使用位图能有效实现 用户签到 等行为,用数据库表记录签到,将占用很多存储;但使用 位图BitMap,就能 大大减少存储占用 二、关于位图 本质上是String类型,最小长度8位(一个字…...

YOLOv11改进策略【卷积层】| ParNet 即插即用模块 二次创新C3k2

一、本文介绍 本文记录的是利用ParNet中的基础模块优化YOLOv11的目标检测网络模型。 ParNet block是一个即插即用模块,能够在不增加深度的情况下增加感受野,更好地处理图像中的不同尺度特征,有助于网络对输入数据更全面地理解和学习,从而提升网络的特征提取能力和分类性能…...

学习threejs,网格深度材质MeshDepthMaterial

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️网格深度材质MeshDepthMate…...

算法时间、空间复杂度(二)

目录 大O渐进表示法 一、时间复杂度量级的判断 定义: 例一:执行2*N+1次 例二:执行MN次 例三:执行已知次数 例四:存在最好情况和最坏情况 顺序查找 冒泡排序 二分查找 例五:阶乘递归 ​编辑 例…...

高级java每日一道面试题-2024年10月11日-数据库篇[Redis篇]-Redis都有哪些使用场景?

如果有遗漏,评论区告诉我进行补充 面试官: Redis都有哪些使用场景? 我回答: Redis 是一个开源的、基于键值对的数据结构存储系统,,它支持多种数据类型,包括字符串、散列、列表、集合和有序集合。它可以用作数据库、缓存和消息中间件。由于…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...