当前位置: 首页 > news >正文

深度学习 %matplotlib inline

%matplotlib inline 是在 Jupyter Notebook 中使用的一个魔法命令,主要用于配置 Matplotlib 图形的显示方式。具体来说,这个命令的作用是将 Matplotlib 生成的图形直接嵌入到 notebook 中,而不是在弹出的窗口中显示。

使用方法

在 Jupyter Notebook 的代码单元中输入以下命令:

%matplotlib inline

作用

  • 内嵌显示:执行后,所有使用 Matplotlib 绘制的图形会直接显示在代码单元下方。
  • 方便展示:适合于数据分析、可视化和教学等场景,可以方便地展示图形,而无需额外窗口。

示例

下面是一个简单的例子,演示如何使用 %matplotlib inline

import matplotlib.pyplot as plt
import numpy as np# 启用 inline 模式
%matplotlib inline# 创建数据
x = np.linspace(0, 10, 100)
y = np.sin(x)# 绘制图形
plt.plot(x, y)
plt.title("Sine Wave")
plt.xlabel("x")
plt.ylabel("sin(x)")
plt.show()

结果

运行上述代码后,会看到一个正弦波图形直接显示在 Jupyter Notebook 中。

线性回归从0开始:

首先,导入所需的包或模块:

%matplotlib inline 
from IPython import display 
from matplotlib import pyplot as plt 
from mxnet import autograd,nd 
import random

代码解释

  1. %matplotlib inline:

    • 这是一个魔法命令,用于在 Jupyter Notebook 中直接显示 Matplotlib 绘制的图形,而不需要调用 plt.show()
  2. from IPython import display:

    • 这个模块提供了在 Jupyter Notebook 中显示各种媒体类型的工具,包括图像、视频和 HTML 内容。
  3. from matplotlib import pyplot as plt:

    • Matplotlib 是一个用于绘制图形的库,pyplot 提供了一系列方便的函数,使 Matplotlib 的使用类似于 MATLAB。
  4. from mxnet import autograd, nd:

    • MXNet 是一个深度学习框架。
      • autograd 用于自动微分,适合构建和训练神经网络。
      • nd 是一个类似于 NumPy 的多维数组类,但针对 GPU 进行了优化。
  5. import random:

    • Python 内置的随机库,用于生成随机数和执行随机操作,例如打乱列表或选择随机元素。
# 导入库
%matplotlib inline
from IPython import display
from matplotlib import pyplot as plt
from mxnet import autograd, nd
import random# 生成随机数据
x = nd.array([random.uniform(0, 10) for _ in range(100)])  # 生成100个随机x值
y = nd.array([2.5 * xi + random.uniform(-1, 1) for xi in x])  # 线性关系 y = 2.5x + 噪声# 创建简单的线性回归模型
W = nd.random_normal(shape=(1,), ctx=x.context)  # 初始化权重
b = nd.random_normal(shape=(1,), ctx=x.context)  # 初始化偏置# 定义损失函数
def loss(y_true, y_pred):return ((y_true - y_pred) ** 2).mean()  # 均方误差# 训练模型
learning_rate = 0.01
for epoch in range(10):with autograd.record():  # 开始记录梯度y_pred = W * x + b  # 线性模型l = loss(y, y_pred)  # 计算损失l.backward()  # 反向传播W[:] -= learning_rate * W.grad  # 更新权重b[:] -= learning_rate * b.grad  # 更新偏置print(f'第 {epoch + 1} 轮, 损失: {l.asscalar()}')  # 输出当前损失# 可视化结果
plt.scatter(x.asnumpy(), y.asnumpy(), color='blue', label='数据点')  # 绘制数据点
plt.plot(x.asnumpy(), (W * x + b).asnumpy(), color='red', label='拟合直线')  # 绘制拟合直线
plt.title('线性回归示例')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()  # 显示图形

示例代码说明

  • 生成数据:随机生成100个数据点,模拟一个线性关系 ( y = 2.5x + \text{噪声} )。
  • 线性回归模型:定义一个简单的线性回归模型,使用梯度下降法进行训练。
  • 可视化结果:使用 Matplotlib 绘制数据点和拟合的直线。

相关文章:

深度学习 %matplotlib inline

%matplotlib inline 是在 Jupyter Notebook 中使用的一个魔法命令,主要用于配置 Matplotlib 图形的显示方式。具体来说,这个命令的作用是将 Matplotlib 生成的图形直接嵌入到 notebook 中,而不是在弹出的窗口中显示。 使用方法 在 Jupyter …...

RT-Thread线程的定义和属性

目录 概述 1 RT-Thread线程定义 1.1 优先级设定方法 1.2 内存管理 1.2.1 RT-Thread的线程类别 1.2.2 RT-Thread的线程调度 2 线程重要属性 2.1 线程栈 2.2 线程状态 2.3 线程优先级 2.4 时间片 概述 本文主要介绍RT-Thread线程的定义和属性,其包括线程的…...

【大模型问答测试】大模型问答测试脚本实现(第二版)——接入pytest与代码解耦

背景 接上一篇,【大模型问答测试】大模型问答测试脚本实现(第一版)。 在实现自动化的时候,原先把很多方法与request请求写在一块了,趁着目前实现接口数量较少,决定对代码进行解耦,并且清晰目录…...

Windows模拟电脑假死之键盘鼠标无响应

Windows模拟电脑假死之键盘鼠标无响应 1. 场景需求 模拟Windows电脑假死,失去键盘鼠标响应。 2. 解决方案 采用Windows系统提供的钩子(Hook) API 拦截系统鼠标键盘消息。 3. 示例程序 【1】. 创建MFC对话框项目 新建一个MFC应用程序项目,项目名称…...

一文详解线程池

什么是线程池? 线程池:就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。 为什么用线程池? 线程池的优势:线程池做的工作…...

网际报文协议ICMP及ICMP重定向实例详解2

之前在一个项目中遇到了与ICMP重定向相关的问题,因为缺乏对ICMP相关内容的了解,排查了很长一段时间才查出来。本文给大家简要地介绍一下ICMP及ICMP重定向相关的内容。 1、ICMP的概念 ICMP(Internet Control Message Protocol)网际…...

CSS 总结

CSS 总结 引言 CSS(层叠样式表)是网页设计中不可或缺的一部分,它用于控制网页的布局和样式。本文将对CSS的基本概念、关键特性、常用属性以及最佳实践进行总结,旨在帮助读者深入理解并有效运用CSS。 CSS基本概念 1. 什么是CSS? CSS是一种样式表语言,用于描述HTML或X…...

C语言_指针_进阶

引言:在前面的c语言_指针初阶上,我们了解了简单的指针类型以及使用,下面我们将进入更深层次的指针学习,对指针的理解会有一个极大的提升。从此以后,指针将不再是难点,而是学习底层语言的一把利器。 本章重点…...

chat_gpt回答:python使用writearray写tiff速度太慢,有什么快速的方法吗

如果你在使用 Python 的 tifffile 库(或类似库)写入 TIFF 文件时速度太慢,以下是几个加速写入的优化方法和替代方案: 1. 优化文件压缩设置 TIFF 支持压缩格式,但压缩过程可能非常耗时。如果你不需要压缩,…...

【时时三省】(C语言基础)函数介绍strcat

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 strcat 字符串追加 示例: 比如我要把world加到hello后面去 就可以用这个 还有一种方法是这样 这两个代码的意思是一样的 只是写法不一样 写的时候要注意这些 •源字符串必须…...

ESP32C3 开发板在Linux环境下,进行JTAG 调试演示-启明云端乐鑫代理商

JTAG 调试教程 本教程主要演示 esp32c3 开发板在 linux 环境下,通过 vscode 的 esp-idf 插件使用 jtag 调试工具。 esp32c3 不但内置了USB-JTAG,还内置了USB-SERIAL,仅需要一根USB线即可实现下载和调试仿真。 下面演示调试仿真的过程。 创…...

《计算机视觉》—— 基于PyCharm中的dlib库实现人脸关键点定位

文章目录 1. 安装必要的库2. 下载dlib的人脸检测器和关键点预测器模型3. 编写代码 人脸关键点定位是指通过计算机视觉技术,识别和定位人脸图像中的关键点,如眼睛、鼻子、嘴巴等特定位置。这些关键点的准确定位对于人脸识别、表情分析、姿态估计等应用具有…...

c++习题34-说谎

目录 一,题目 二,思路 三,代码 一,题目 描述 ljc以自己的人格担保他最后一个回答一定是正确的,但并不保证其它的回答是对的。 每个数为ljc对上一个的回答,若为0表示说上句话是错的,若为…...

如何使用Android Profiler进行性能分析?

Android Profiler是Android Studio中一个功能强大的性能分析工具,它可以帮助开发者实时监控应用的CPU、内存、网络、电量和图形渲染等性能指标,从而发现并解决性能瓶颈。以下是如何使用Android Profiler进行性能分析的详细步骤和技巧。 一、准备工作 安…...

整理—MySQL

目录 NOSQL和SQL的区别 数据库三大范式 MySQL 怎么连表查询 MySQL如何避免重复插入数据? CHAR 和 VARCHAR有什么区别? Text数据类型可以无限大吗? 说一下外键约束 MySQL的关键字in和exist mysql中的一些基本函数 SQL查询语句的执行顺…...

临时配置linux Bridge网桥

Linux Bridge(网桥)是用纯软件实现的虚拟交换机,有着和物理交换机相同的功能,例如二层交换,MAC地址学习等。因此我们可以把tun/tap,veth pair等设备绑定到网桥上,就像是把设备连接到物理交换机上…...

【Canvas与化学】铁元素图标

【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>铁元素图标Draft1</title><style type"text/css"…...

list转map常用方法

利用Collectors.toMap收集指定属性 public Map<Long, String> getIdNameMap(List<Account> accounts) {return accounts.stream().collect(Collectors.toMap(Account::getId, Account::getUsername)); } 收集对象实体本身 - 在开发过程中我们也需要有时候对自己…...

C++容器适配器的模拟实现-stack、queue、priority_queue

### 容器适配器是将容器转换到其他容器自身不方便使用的地方&#xff0c;但是就容器适配器其本身还是包装的容器&#xff0c;所以这个类模板中各个接口的实现都是调用的容器的接口&#xff0c;因为容器适配器可能适配多个容器&#xff0c;所以这个类模板的模板参数中有一个参数…...

fastapi的docs页面是空白解决

环境&#xff1a;openEuler、python 3.11.6、fastapi 0.115.2 背景&#xff1a;居家办公&#xff0c;默认搭建的fastapi的docs接口为空白 时间&#xff1a;20241016 说明&#xff1a;网上很多教程的缺点是复杂&#xff08;但是能够了解的更清楚&#xff09;&#xff0c;使用…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...

Matlab实现任意伪彩色图像可视化显示

Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中&#xff0c;如何展示好看的实验结果图像非常重要&#xff01;&#xff01;&#xff01; 1、灰度原始图像 灰度图像每个像素点只有一个数值&#xff0c;代表该点的​​亮度&#xff08;或…...