当前位置: 首页 > news >正文

买卖股票的最佳时机(动态规划方法总结)

总结一下,买卖股票系列的动态规划思想,贪心解法或者其他解法不做描述。

总结

121. 买卖股票的最佳时机 只有一次交易机会,每天有两种状态:持有股票和不持有股票;

122. 买卖股票的最佳时机 II 有多次交易机会,每天有两种状态:持有股票和不持有股票;

123. 买卖股票的最佳时机 III 至多两次交易机会,每天有 2*2=4 种状态:第一次持有股票;第一次不持有股票;第二次持有股票;第二次不持有股票;

188. 买卖股票的最佳时机 IV - 力扣(LeetCode)至多 k 次交易机会,与买卖股票 3 相比,每天有 2*k=2k 种状态:第一次持有股票;第一次不持有股票;第二次持有股票;第二次不持有股票... 第 k 次持有股票;第 k 次不持有股票。

买卖股票的最佳时机 Ⅰ

题目描述:给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0

买卖股票系列的第一题,核心是只有一次交易机会

dp 数组建立:

用两个 dp 数组来描述:

  • dp[i][0] 第 i 天持有股票的最大剩余现金
  • dp[i][1] 第 i 天不持有股票的最大剩余现金

重要的是理解这里的“剩余现金”是什么含义:一开始,我们持有的现金为 0,买入一支股票i后,我们持有股票的剩余现金就是-prices[i],而在第 i+k 天卖出股票后,我们不持有股票的剩余现金就是 prices[i+k] - prices[i],也就是交易后的利润。

dp[0][0] = -prices[0]; 因为第 0 天要持有股票,只能购入第一支股票,剩余现金为 -prices[0]

dp[0][1] = 0; 因为第 0 天只能买入股票,无法卖出股票,因此 dp[0][1] 初始化为 0。


递推公式:

  • dp[i][0] = max(dp[i-1][0], -prices[i]);第 i 天持有股票,有两种情况:
    • 第一种,第 i不买入股票,那么第 i天持有股票的剩余现金就是第 i-1天持有股票的剩余现金,即dp[i][0] = dp[i-1][0];
    • 第二种,第 i买入股票,那么第 i天持有股票的剩余现金就是 0 减去第 i 天的股票价格,即dp[i][0] = -prices[i];
    • 两者取最大值。
  • dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]);同样有两种情况:
    • 第一种,i 天前已经不持有股票,那么第 i天持有股票的剩余现金就是第 i-1天持有股票的剩余现金,即dp[i][1] = dp[i-1][1];
    • 第二种,i 天当天才不持有股票,那么第 i天持有股票的剩余现金就是第 i 天的股票价格 + 第 i-1 天持有股票的最大剩余现金,即dp[i][1] = prices[i] + dp[i-1][0];
    • 两者取最大值。

完整代码:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();// dp[i][0] 第 i 天持有股票的最大剩余现金;// dp[i][1] 第 i 天不持有股票的最大剩余现金。vector<vector<int>> dp(n, vector<int>(2, 0));dp[0][0] = -prices[0];dp[0][1] = 0;for (int i = 1; i < n; ++i) {dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);}return dp[n - 1][1];}
};

买卖股票的最佳时机 Ⅱ

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润

买卖股票系列的第二题,和第一题的不同之处在于,可以多次买卖股票

dp 数组建立:

用两个 dp 数组来描述:

  • dp[i][0] 第 i 天持有股票的最大剩余现金
  • dp[i][1] 第 i 天不持有股票的最大剩余现金

dp[0][0] = -prices[0]; 因为第 0 天要持有股票,只能购入第一支股票,剩余现金为 -prices[0]

dp[0][1] = 0; 因为第 0 天不管是不买股票,还是买了再卖出股票,都无法获得利润,因此 dp[0][1] 初始化为 0。


递推公式:

  • dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);第 i 天持有股票,有两种情况:
    • 第一种,第 i不买入股票,那么第 i天持有股票的剩余现金就是第 i-1天持有股票的剩余现金,即dp[i][0] = dp[i-1][0];
    • 第二种,第 i买入股票,那么第 i-1 天就不能持有股票,因为在这道题目中连续购买两支股票没有意义,只会多花钱。第 i天持有股票的剩余现金就是 第 i-1 天不持有股票的最大剩余现金减去第 i 天的股票价格,即dp[i][0] = dp[i-1][1] - prices[i];
    • 两者取最大值。
  • dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]);同样有两种情况:
    • 第一种,i 天前已经不持有股票,那么第 i天持有股票的剩余现金就是第 i-1天持有股票的剩余现金,即dp[i][1] = dp[i-1][1];
    • 第二种,i 天当天才不持有股票,同理,第 i-1 天必须是持有股票的,没有持有股票,怎么卖出股票呢?第 i天持有股票的剩余现金就是第 i 天的股票价格 + 第 i-1 天持有股票的最大剩余现金,即dp[i][1] = prices[i] + dp[i-1][0];
    • 两者取最大值。

完整代码:

class Solution {
public:int maxProfit(vector<int>& prices) {// 动态规划// dp[i][0] 表示第i天持有股票的最少消耗// dp[i][1] 表示第i天持有股票的最大利润vector<vector<int>> dp(prices.size(), vector<int>(2, 0));dp[0][0] = -prices[0];dp[0][1] = 0;for (int i = 1; i < prices.size(); ++i) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);}return dp[prices.size() - 1][1];}
};

总结:

本题和121. 买卖股票的最佳时机的代码几乎一样,唯一的区别在:

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

因为本题的股票可以买卖多次! 所以买入股票的时候,剩余现金可能包含之前买卖的所得利润:dp[i - 1][1],所以 dp[i][0] 可能会等于 dp[i-1][1] - prices[i]

想到到这一点,对这两道题理解的就比较深刻了。

买卖股票的最佳时机 Ⅲ

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

这题,要求我们在购入股票时,手上不能持有其他股票,且最多只能进行两笔交易

前两道题,同一天只有两种状态:持有股票或者不持有股票

对于这道题,同一天可以有 4 种状态:

  1. 第一次持有股票
  2. 第一次不持有股票
  3. 第二次持有股票
  4. 第二次不持有股票

那么 dp[i][j] 就表示第 i 天的 j 状态下的最大剩余现金。

dp[0][0] = -prices[0];第 0 天第一次买入;

dp[0][1] = 0;

dp[0][2] = -prices[0];第 0 天第二次买入(第一次买入后卖出,再买入,有点蛇精病,但是为了做题,只能这么买了)

dp[0][3] = 0;


递推公式:

  1. 第 i 天第一次持有股票的最大剩余金额 = max(第 i-1 天第一次持有股票的最大剩余金额, -第 i 天股票价格)
  2. 第 i 天第一次不持有股票的最大剩余金额 = max(第 i-1 天第一次不持有股票的最大剩余金额, 第 i 天股票价格 + 第 i-1 天第一次持有股票的最大剩余金额)
  3. 第 i 天第二次持有股票的最大剩余金额 = max(第 i-1 天第二次持有股票的最大剩余金额, 第 i-1 天第一次不持有股票的最大剩余金额 - 第 i 天股票价格)
  4. 第 i 天第二次不持有股票的最大剩余金额 = max(第 i-1 天第二次不持有股票的最大剩余金额, 第 i-1 天第二次持有股票的最大剩余金额 + 第 i 天股票价格)
dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] - prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] + prices[i]);;

完整代码:

注意,两次卖出的状态剩余现金最大一定是最后一次卖出。可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出的剩余现金一定是最多的。

class Solution {
public:int maxProfit(vector<int>& prices) {// 动态规划// 1. 第一次持有股票// 2. 第一次不持有股票// 3. 第二次持有股票// 4. 第二次不持有股票vector<vector<int>> dp(prices.size(), vector<int>(4, 0));dp[0][0] = -prices[0];dp[0][1] = 0;dp[0][2] = -prices[0];dp[0][3] = 0;for (int i = 1; i < prices.size(); ++i) {dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] - prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] + prices[i]);;}int result = max( dp[prices.size() - 1][1], dp[prices.size() - 1][3] );return result;}
};

买卖股票的最佳时机 Ⅳ

给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

与 123. 买卖股票的最佳时机 III 不同,这一次,我们最多可以完成 k 笔交易

那如果按照 3 的思路,我们可以用 dp[i][2 * k] 来描述第 i 天的 2k 种不同状态。

完整代码:

class Solution {
public:int maxProfit(int k, vector<int>& prices) {// 动态规划// 1. 第一次持有股票 dp[i][0]// 2. 第一次不持有股票 dp[i][1]// 3. 第二次持有股票 dp[i][2]// 4. 第二次不持有股票 dp[i][3]// ...//      k次持有 dp[i][2 * k - 2]//      k次不持有 dp[i][2 * k - 1]vector<vector<int>> dp(prices.size(), vector<int>(2 * k, 0));for (int i = 0; i < 2 * k; i+=2) {dp[0][i] = -prices[0];}for (int i = 1; i < prices.size(); ++i) {// 计算第一次的两个状态dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);for (int j = 2; j <= k; ++j) {// 计算第2次到第k次的所有状态dp[i][2 * j - 2] = max(dp[i - 1][2 * j - 2], dp[i - 1][2 * j - 3] - prices[i]);dp[i][2 * j - 1] = max(dp[i - 1][2 * j - 1], dp[i - 1][2 * j - 2] + prices[i]);}}int result = dp[prices.size() - 1][2 * k - 1];return result;}
};

相关文章:

买卖股票的最佳时机(动态规划方法总结)

总结一下&#xff0c;买卖股票系列的动态规划思想&#xff0c;贪心解法或者其他解法不做描述。 总结 121. 买卖股票的最佳时机 只有一次交易机会&#xff0c;每天有两种状态&#xff1a;持有股票和不持有股票&#xff1b; 122. 买卖股票的最佳时机 II 有多次交易机会&#x…...

KubeSphere安装mysql8.4.0

背景 KubeSphere 是在 Kubernetes 之上构建的以应用为中心的多租户容器平台,完全开源,提供全栈的 IT 自动化运维的能力,简化企业的 DevOps 工作流。KubeSphere 提供了运维友好的向导式操作界面&#xff0c;帮助企业快速构建一个强大和功能丰富的容器云平台。 安装组件前提&am…...

SpringBoot项目热部署-devtools

DevTools 会使用两个类加载器&#xff08;一个用于加载不变的类&#xff0c;一个用于加载可能会变化的类&#xff09;&#xff0c;每次重启只重新加载管理变化的类的加载器&#xff0c;因此会快很多 1.导入依赖 <dependency> <groupId>org.springframework.boot&l…...

从MySQL到OceanBase离线数据迁移的实践

本文作者&#xff1a;玉璁&#xff0c;OceanBase 生态产品技术专家。工作十余年&#xff0c;一直在基础架构与中间件领域从事研发工作。现负责OceanBase离线导数产品工具的研发工作&#xff0c;致力于为 OceanBase 建设一套完善的生态工具体系。 背景介绍 在互联网与云数据库技…...

ifconfig 和 ip addr

1. 工具所属套件 ifconfig&#xff1a;属于较老的 net-tools 套件。曾是 Unix 和 Linux 系统上广泛使用的工具。ip addr&#xff1a;属于较新的 iproute2 套件。它取代了 ifconfig&#xff0c;并逐渐成为现代 Linux 系统上更常用的工具。 2. 功能覆盖范围 ifconfig&#xff…...

NCCL报错

1、报错信息&#xff1a; raise RuntimeError("Distributed package doesnt have NCCL " "built in") RuntimeError: Distributed package doesnt have NCCL built in 2、报错原因&#xff1a; windows系统不支持nccl&#xff0c;采用gloo&#xff1b; …...

域7:安全运营 第16章 安全运营管理

第七域包括 16、17、18、19 章。 第七域所涵盖的广泛知识点&#xff0c;与我们的安全运营工作之间存在着高度的契合性。这些知识点不仅为我们的安全运营提供了有力的理论支撑&#xff0c;还使得SOC&#xff08;安全运营中心&#xff09;在日常运作中能够更加高效地发挥作用。通…...

研发线上事故风险解读之数据库存储

专业在线打字练习平台-巧手打字通&#xff0c;只输出有价值的知识。 一 前言 本文继续基于《线上事故案例集》&#xff0c;进一步深入梳理线上事故数据存储方面的问题点&#xff0c;重点关注数据库存储在使用和优化过程中可能出现的问题&#xff0c;旨在为读者提供具有实践指导…...

react hooks中在setState后输出state为啥没有变化,如何解决

在 React Hooks 中&#xff0c;setState 的概念被 useState 或 useReducer 钩子所替代。与类组件中的 setState 一样&#xff0c;这些钩子也是异步更新状态的。因此&#xff0c;如果你尝试在调用 setState&#xff08;即 setXXX 函数&#xff09;后立即读取状态值&#xff0c;你…...

C++设计模式——代理模式

欢迎来到 破晓的历程的 博客 ⛺️不负时光&#xff0c;不负己✈️ 文章目录 引言代理模式的定义代理模式的具体实现 引言 我们经常听到代理服务器「代理服务器是一个中间服务器&#xff0c;能够接收客户端的请求&#xff0c;并代表客户端向服务器发起请求&#xff0c;然后将服…...

docker 复制文件,清除不再使用数据导出以及导出文件系统

docker cp -a centos :/etc/centos-release #将容器内文件复制到宿主机 docker cp /etc/issue centos:/root #将宿主机文件复制到容器内 docker export&#xff1a; 将一个运行的或者挺值得容器的文件系统导出为一个tar归档文件。需要注意&#xff0c;docker export 不会包含该…...

【Vue】Vue3.0(十一)Vue 3.0 中 computed 计算属性概念、使用及示例

上篇文章&#xff1a;【Vue】Vue3.0&#xff08;十&#xff09;toRefs()和toRef()的区别及使用示例 &#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f916;Vue专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年10月15日10点23分 文章目录 Vue 3.0中…...

【第三版 系统集成项目管理工程师】第17章 法律法规和标准规范

持续更新。。。。。。。。。。。。。。。 【第三版】第17章 法律法规和标准规范 17.1法律法规17.1.1 法与法律 P5801.基本概念-P5802.本质与特征-P580 17.1.2 法律体系1.世界法律体系(非重点)-P5802.中国特色社会主义法律体系-P581 17.1.3 法的效力1.对象效力-P5822.空间效力-…...

安装 LLM 编程工具 cursor

1&#xff0c;网址 cursor.com 点击 Download for Free 下载安装包 下载到一个300KB的安装压缩包&#xff0c;解压后双击后&#xff0c;点 open 安装过成会下载真正的应用程序 点击 continue 登陆 比如选择使用 github账号登陆 则会弹出如下网页&#xff1a; 先登陆 github&a…...

Java链式编程的定义、例子、使用方法、实际应用场景、自动装配构造

链式编程&#xff08;Fluent Interface&#xff09;是一种编程风格&#xff0c;允许通过方法调用连接在一起进行操作&#xff0c;通常用于提高代码的可读性和简洁性。在 Java 中&#xff0c;链式编程常通过返回 this&#xff08;当前对象&#xff09;来实现。这种做法在构建器模…...

用 Git Stash 临时保存修改,轻松切换任务!

在开发过程中&#xff0c;我们经常会遇到这样的情况&#xff1a;正在写代码&#xff0c;突然领导或同事让你赶紧处理一个紧急 bug&#xff0c;但你当前的代码还没写完&#xff0c;不能提交&#xff0c;这时候该怎么办呢&#xff1f;别慌&#xff0c;Git 的 stash 命令正好能帮上…...

Android 下通过触发 SIGTRAP 信号实现反调试

版权归作者所有&#xff0c;如有转发&#xff0c;请注明文章出处&#xff1a;https://cyrus-studio.github.io/blog/ 详细的 Linux 信号列表 Linux 信号是一种用于进程间通信&#xff08;IPC&#xff09;和异常处理的机制。以下是详细的 Linux 信号列表&#xff0c;包含信号名…...

【MySQL】 表的增删操作

目录 1.Create&#xff08;增&#xff09; 1.1.单行数据 全列插入 1.2.多行数据 指定列插入 1.3.插入否则更新 1.4.替换数据&#xff08;REPLACE&#xff09; 2.Delete&#xff08;删&#xff09; 2.1.删除表中的某个条目 2.2.删除整张表数据 2.3.截断表 1.Create…...

新生入门季 | 学习生物信息分析,如何解决个人电脑算力不足的问题?

随着生物信息学在科研和教育中的快速普及&#xff0c;越来越多的新生开始接触基因组测序、RNA分析等复杂计算任务。然而&#xff0c;在面对这些大规模数据时&#xff0c;个人电脑的算力往往显得捉襟见肘。你是否也在为自己的笔记本性能不足而苦恼&#xff1f; 这篇文章将为你提…...

20255 - 中医方剂学 - 考研 - 执业

第1章 总论 1.我国现存最早的记载方剂的医书是&#xff08;&#xff09;( ) [单选] A.《太平圣惠方》 B.《黄帝内经》 C.《五十二病方》 D.《千金要方》 E.《外台秘要》 正确答案: C 2.我国最早的中医经典理论著作是&#xff08;&#xff09;( ) [单选] A.《伤寒杂病论…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...