PyTorch 2.5 发布带来一些新特性和改进
- 官网:https://github.com/pytorch/pytorch
- GitHub:https://github.com/pytorch/pytorch
- 原文:https://github.com/pytorch/pytorch/releases/tag/v2.5.0
主要亮点 (Highlights)]
- SDPA CuDNN 后端:为
torch.nn.functional.scaled_dot_product_attention提供了新的 CuDNN 后端,可以在 NVIDIA H100 或更新的 GPU 上提供高达 75% 的加速。 - torch.compile 区域编译:通过
torch._dynamo.config.inline_inbuilt_nn_modules允许编译重复的nn.Module(例如大型语言模型中的变换器层)而无需重新编译,从而减少编译延迟。 - TorchInductor CPU 后端优化:包括 C++ 后端代码生成和 FX 融合,支持向量化和所有 Inductor IR 操作,兼容 Linux 和 Windows 系统。

PyTorch 2.5.0版本的发布带来了一系列新特性、改进、性能优化以及bug修复,旨在提升用户体验、增强功能和提高执行效率。以下是对PyTorch 2.5.0版本的全面总结:
新特性和改进
-
SDPA CuDNN后端:引入了新的CuDNN后端,为使用H100或更新型号GPU的SDPA用户提供了默认的速度提升。
-
torch.compile的区域编译:允许用户编译重复的
nn.Module,而无需重新编译,减少了编译延迟并可能轻微降低性能。 -
TorchInductor CPU后端优化:包括CPP后端代码生成和FX融合,支持向量化操作和静态/符号形状,兼容Linux和Windows操作系统。
-
FlexAttention API:一个灵活的API,允许用少量代码实现多种注意力机制,如滑动窗口、因果掩码等,并自动生成反向传播。
-
编译自动微分:作为PT2技术栈的扩展,允许捕获完整的反向传播过程,提高了自动微分的灵活性。
-
飞行记录器:一个调试工具,用于捕获集体操作的信息,帮助快速识别和解决作业卡住的问题。
-
最大自动调优CPU支持:Inductor CPU后端在编译时配置多个操作实现,并选择最佳性能的一个。
-
TorchInductor在Windows上的支持:支持MSVC、clang和Intel编译器。
-
FP16在CPU路径上的支持:支持在CPU上使用FP16数据类型,有助于提升性能。
-
自动加载设备扩展:简化了设备扩展的集成过程,无需手动导入。
-
增强的Intel GPU支持:扩展了对Intel GPU的支持,包括数据中心和客户端GPU。
向后不兼容的变更
- 分布式处理:移除了一些旧的选项和方法,以反映代码结构的正确性。
- 导出功能:移除了
dynamic_dim()方法,改用Dims来指定动态形状。 - Inductor:更新了基准测试路径,从使用Triton的基准测试工具转移到内部Inductor工具。
性能优化
- CUDA:为深度卷积反向操作生成内核,调整了tile启发式规则以提高性能。
- 分布式:添加了CPU分析器的动态活动切换API。
- Dynamo:手动实现了
nn.Module.__getattr__和nn.Module._call_impl,优化了小型元组的guard。 - Inductor:添加了对BF16->FP32转换的NEON实现,支持了INT8数据类型的masked vectorization。
文档和开发者支持
- 提供了详细的文档更新,包括新特性的使用说明、API文档的改进和错误信息的优化。
安全性更新
- Inductor:放宽了对大小符号可以为0的统一检查。
其他改进
- Autograd前端:支持
GradientEdge作为torch.autograd.grad的输出。 - 分布式:引入了带有分析器的Flight Recorder,用于捕获集体操作的诊断信息。
- Dynamo:引入了
torch._dynamo.config.enable_compiler_collectives,用于跨等级同步编译。 - 导出功能:支持
export_for_training,自动动态形状。
相关文章:
PyTorch 2.5 发布带来一些新特性和改进
官网:https://github.com/pytorch/pytorchGitHub:https://github.com/pytorch/pytorch原文:https://github.com/pytorch/pytorch/releases/tag/v2.5.0 主要亮点 (Highlights)] SDPA CuDNN 后端:为 torch.nn.functional.scaled_d…...
算法:560.和为k的子数组
题目 链接:leetcode链接 思路分析(前缀和) 注意:我们前面讲过滑动窗口可以处理子数组、子串等问题, 但是在这道题目里面注意数据范围 -1000 < nums[i] < 1000 nums[i]可正可负,区间的和没有单调性,使…...
C++之list(2)
list(2) list的迭代器 const迭代器 根据我们之前学过的知识: const int*p1;//修饰的是指向的内容 int *const p2;//修饰的是迭代器本身我们写const迭代器,期望的是指向的内容不能修改。 所以更期望写上面p1的形式 const迭代器与普通迭代器的不同点在于…...
React Componet类组件详解(老项目)
React类组件是通过创建class继承React.Component来创建的,是React中用于构建用户界面的重要部分。以下是对React类组件的详细解释: 一、定义与基本结构 类组件使用ES6的class语法定义,并继承自React.Component。它们具有更复杂的功能&#…...
位运算题目-Java实现-LeetCode题解:判断字符是否唯一-丢失的数字-两整数之和-只出现一次的数字 II-消失的两个数字
这里是Themberfue 上一篇文章讲完了常见位运算的技巧以及总结 那么本章则通过五道题来运用这些技巧 判定字符是否唯一 题目解析 本题要求判断给定字符串中的字符是否唯一,也就是每个字符是否只出现一次 算法讲解 本题用哈希表遍历每一个字符也可以解决 如果这题使…...
复合泊松过程
复合泊松过程的均值、方差与特征函数 复合泊松过程的定义 复合泊松过程 ( Y(t) ) 是一种常见的随机过程,通常定义为: Y ( t ) ∑ k 1 N ( t ) X k Y(t) \sum_{k1}^{N(t)} X_k Y(t)k1∑N(t)Xk 其中: ( N(t) ) 是一个强度为 ( \lambd…...
[week1] newstar ctf ezAndroidStudy
本题主要考查对 APK 基本结构的掌握 查看 AndroidManifest.xml 可以发现 activity 只有 Homo 和 MainActivity 我们用 Jadx 打开 work.pangbai.ezandroidstudy.Homo 就可以获得 flag1 打开 resources.arsc/res/value/string.xml 搜索 flag2 即可 按描述到 /layout/activity_ma…...
TCP——Socket
应用进程只借助Socket API发和收但是不关心他是怎么进行传和收的 数据结构 图示Socket连接 捆绑属于隐式捆绑...
OpenStack服务Swift重启失效(已解决)
案例分析Swift重启失效 1. 报错详情 在重新启动 VMware 虚拟机后,我们发现 OpenStack 的 Swift 服务出现了 503 Service Unavailable 错误。经过排查,问题根源在于 Swift 服务所使用的存储挂载是临时挂载,而非永久挂载。 Swift 服务依赖于…...
System.Text.Json类库进行json转化时ValueKind:Object问题
当你的使用的Json库是System.Text.Json,而不是Newtonsoft.Json库的时候,你可能遇到以下问题及其解决办法。通常的解决办法是进行一些对应的配置。此外就需要根据情况使用自定义转换器实现你的需求。以下是通常遇到的使用自定义转换器解决的例子: Q1.当遇…...
免费Excel工作表同类数据合并工具
下载地址:https://pan.quark.cn/s/81b1aeb45e4c 在 Excel 表格里,当我们试图手动将多行同类数据合并为一行时,会遭遇诸多棘手的困难以及繁杂的操作流程。在确定哪些数据属于可合并的同类数据时,单纯依靠人工进行对比,极…...
如何在算家云搭建Video-Infinity(视频生成)
一、模型介绍 Video-Infinity是一个先进的视频生成模型,使用多个 GPU 快速生成长视频,无需额外训练。它能够基于用户提供的文本或图片提示,创造出高质量、多样化的视频内容。 二、模型搭建流程 1.大模型 Video-Infinity 一键使用 基础环境…...
LeetCode搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: 2 …...
UE5学习笔记24-添加武器弹药
一、给角色的武器添加弹药 1.创建界面,根据笔记23的界面中添加 2.绑定界面控件 UPROPERTY(meta (Bindwidget))UTextBlock* WeaponAmmoAmount;UPROPERTY(meta (Bindwidget))UTextBlock* CarriedAmmoAmount; 3.添加武器类型枚举 3.1创建武器类型枚举头文件 3.2创建文…...
限制游客在wordpress某分类下阅读文章的数量
在WordPress中实现某个分类下的内容限制游客只能阅读前5篇文章,注册用户可以阅读更多文章的功能,可以通过以下步骤来完成: 1. 安装和激活插件 首先,你可以使用一个插件来简化这个过程。一个常用的插件是 “MemberPress” 或 “R…...
Oracle云主机申请和使用教程:从注册到SSH连接的全过程
今天我要和大家分享如何成功申请Oracle云主机,并进行基本的配置和使用。我知道很多同行的朋友在申请Oracle云主机时都遇到了困难(疑惑abc错误),可能试了很多次都没有成功。现总结一下这些年来的一些注册流程经验,或许你们也能成功申请到自己的…...
芯知识 | NVH-FLASH语音芯片支持平台做语音—打造音频IC技术革新
随着科技的飞速发展,人们对于电子产品的音频性能要求越来越高。在这种背景下,NVH-FLASH系列语音芯片应运而生,作为音频IC领域的一次重大技术革新,NVH-FLASH系列语音芯片凭借其卓越的性能与灵活的支持平台,正逐步引领着…...
机器学习——解释性AI与可解释性机器学习
解释性AI与可解释性机器学习: 理解机器学习模型背后的逻辑 随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解…...
中国全国省市区县汇总全国省市区json省市区数据2024最新
简介 包含全国省市区县数据,共3465个。 全国总共有23个省、5个自治区、4个直辖市、2个特别行政区。 ——更新于2024年10月16日,从2017年开始,已经更新坚持7年 从刚开始1000个左右的城市json,到现在全国省市区县3465个。 本人感觉应该是目前最完善的~ 每年都在更新中,…...
[Linux#67][IP] 报头详解 | 网络划分 | CIDR无类别 | DHCP动态分配 | NAT转发 | 路由器
目录 一. IP协议头格式 学习任何协议前的两个关键问题 IP 报头与有效载荷分离 分离方法 为什么需要16位总长度 如何交付 二. 网络通信 1.IP地址的划分理念 2. 子网管理 3.网络划分 CIDR(无类别域间路由) 目的IP & 当前路由器的子网掩码 …...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
