算法题总结(十四)——贪心算法(上)
贪心算法
什么是贪心
贪心的本质是选择每一阶段的局部最优,从而达到全局最优。
贪心的套路(什么时候用贪心)
刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心
455、分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。
这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
class Solution {// 思路1:优先考虑饼干,小饼干先喂饱小胃口,因为如果大饼干先喂大胃口,则不能尽可能多的喂public int findContentChildren(int[] g, int[] s) {Arrays.sort(g);Arrays.sort(s);int start = 0; //胃口序号int count = 0;for (int i = 0; i < s.length && start < g.length; i++) {if (s[i] >= g[start]) {start++;count++;}}return count;}
}
class Solution {// 思路2:优先考虑胃口,先喂饱大胃口public int findContentChildren(int[] g, int[] s) {Arrays.sort(g);Arrays.sort(s);int count = 0;int start = s.length - 1;// 遍历胃口for (int index = g.length - 1; index >= 0; index--) {if(start >= 0 && g[index] <= s[start]) {start--;count++;}}return count;}
}
376、摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
- 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
- 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)
这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点
所以我们只需要统计峰值的数目就可以的。
在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。
这是我们思考本题的一个大题思路,但本题要考虑三种情况:
- 情况一:上下坡中有平坡
- 情况二:数组首尾两端
- 情况三:单调坡中有平坡
情况一:上下坡中有平坡
例如 [1,2,2,2,1]这样的数组,如图:
如图,可以统一规则,删除左边的三个 2:
如果我们采用,删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。
所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0),为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。
情况二:数组首尾两端
针对数组中只有两个数字的怎么计算?
利用 prediff的初始值为0,result 初始为 1(默认最右面有一个峰值),这样就可以利用(preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)来判断,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)
情况三:单调坡度有平坡
在版本一中,我们忽略了一种情况,即 如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图:
图中,我们可以看出,版本一的代码在三个地方记录峰值,但其实结果因为是 2,因为 单调中的平坡 不能算峰值(即摆动)。
之所以版本一会出问题,是因为我们实时更新了 prediff。
那么我们应该什么时候更新 prediff 呢?
我们只需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。
class Solution {public int wiggleMaxLength(int[] nums) {if (nums.length <= 1) {return nums.length;}//当前差值int curDiff = 0;//上一个差值int preDiff = 0; //默认差值int count = 1; //默认最右端有一个峰值for (int i = 1; i < nums.length; i++) {//得到当前差值curDiff = nums[i] - nums[i - 1];//如果当前差值和上一个差值为一正一负//等于0的情况表示初始时的preDiffif ((preDiff>=0&&curDiff<0)|| (preDiff<=0&&curDiff>0)) {count++;preDiff = curDiff;}}return count;}
}
时间复杂度O(n)
思路 2(动态规划)
考虑用动态规划的思想来解决这个问题。
很容易可以发现,对于我们当前考虑的这个数,要么是作为山峰(即 nums[i] > nums[i-1]),要么是作为山谷(即 nums[i] < nums[i - 1])。
- 设 dp 状态dp[i][0],表示考虑前 i 个数,第 i 个数作为山峰的摆动子序列的最长长度
- 设 dp 状态dp[i][1],表示考虑前 i 个数,第 i 个数作为山谷的摆动子序列的最长长度
则转移方程为:
- dp[i][0] = max(dp[i][0], dp[j][1] + 1),其中0 < j < i且nums[j] < nums[i],表示将 nums[i]接到前面某个山谷后面,作为山峰。
- dp[i][1] = max(dp[i][1], dp[j][0] + 1),其中0 < j < i且nums[j] > nums[i],表示将 nums[i]接到前面某个山峰后面,作为山谷。
初始状态:
由于一个数可以接到前面的某个数后面,也可以以自身为子序列的起点,所以初始状态为:dp[0][0] = dp[0][1] = 1。
// DP
class Solution {public int wiggleMaxLength(int[] nums) {// 0 i 作为波峰的最大长度// 1 i 作为波谷的最大长度int dp[][] = new int[nums.length][2];dp[0][0] = dp[0][1] = 1;for (int i = 1; i < nums.length; i++){//i 自己可以成为波峰或者波谷dp[i][0] = dp[i][1] = 1; //即dp最小值就是1for (int j = 0; j < i; j++){if (nums[j] > nums[i]){// i 是波谷dp[i][1] = Math.max(dp[i][1], dp[j][0] + 1);}if (nums[j] < nums[i]){// i 是波峰dp[i][0] = Math.max(dp[i][0], dp[j][1] + 1);}}}return Math.max(dp[nums.length - 1][0], dp[nums.length - 1][1]);}
}
53、最大子数组和
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
贪心贪的是哪里呢?
如果 -2 1 在一起,计算起点的时候,一定是从 1 开始计算,因为负数只会拉低总和,这就是贪心贪的地方!
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
局部最优的情况下,并记录最大的“连续和”,可以推出全局最优。
从代码角度上来讲:遍历 nums,从头开始用 count 累积,如果 count 一旦加上 nums[i]变为负数,那么就应该从 nums[i+1]开始从 0 累积 count 了,因为已经变为负数的 count,只会拖累总和。区间终止位置,其实就是用sum来记录了最大值。
累加,并记录累加的和,一旦count变成负数,就应该重新计算。
class Solution {public int maxSubArray(int[] nums) {if (nums.length == 1){return nums[0];}int sum = Integer.MIN_VALUE;int count = 0;for (int i = 0; i < nums.length; i++){count += nums[i];sum = Math.max(sum, count); // 取区间累计的最大值(相当于不断确定最大子序终止位置)//每次都要先判断sum,然后再判断count。比如-1,-1,-1,-1,-1if (count <= 0){count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和}}return sum;}
}
动态规划方法:
// DP 方法
class Solution {public int maxSubArray(int[] nums) {int ans = Integer.MIN_VALUE;int[] dp = new int[nums.length]; //表示以i结尾的 子序列的最大和dp[0] = nums[0];ans = dp[0]; //记录最大值for (int i = 1; i < nums.length; i++){dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);ans = Math.max(dp[i], ans);}return ans;}
}
121、买卖股票的最佳时机
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
- 1 <= prices.length <= 105
- 0 <= prices[i] <= 104
本题注意,这一支股票只能买卖一次!所以要选取最大的差值。
所以使用贪心算法,遍历一次,分别找前面的最小值,和最大的差值!
class Solution {public int maxProfit(int[] prices) {int min=Integer.MAX_VALUE;int result=0;for(int i=0;i<prices.length;i++){min=Math.min(min,prices[i]); //寻找前面的最小值result=Math.max(result,prices[i]-min); //最大差值}return result;}
}
动态规划:
class Solution {public int maxProfit(int[] prices) {int len =prices.length;//dp[i][0]代表第i天的时候持有股票,的最大收益//dp[i][1]代表第i天不持有股票的最大收益int[][] dp=new int[len][2];dp[0][0]=-prices[0];dp[0][1]=0;for(int i=1;i<len;i++){dp[i][0]=Math.max(dp[i-1][0],-prices[i]);dp[i][1]=Math.max(dp[i-1][0]+prices[i],dp[i-1][1]);}return dp[len-1][1];}
}
122、买卖股票的最佳时机 II
给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例 1:
输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。总利润为 4 + 3 = 7 。
示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。总利润为 4 。
此题与上一题不同的就是 这一支股票可以买卖多次!,然后算出来总利润!
如果想到其实最终利润是可以分解的,那么本题就很容易了!
如何分解呢?
假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。
相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。
此时就是把利润分解为每天为单位的维度,而不是从 0 天到第 3 天整体去考虑!
局部最优:收集每天的正利润,全局最优:求得最大利润。
因为可以当天卖出后又买入,相当于没有卖出。
class Solution {public int maxProfit(int[] prices) {//数组记录利润int[] profit=new int[prices.length-1];int result=0;for(int i=0;i<prices.length-1;i++){profit[i]=prices[i+1]-prices[i];}for(int i=0;i<profit.length;i++){if(profit[i]>0)result+=profit[i];}return result;}
}
55、跳跃游戏
给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。
示例 1:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
其实跳几步无所谓,关键在于可跳的覆盖范围!
那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
class Solution {public boolean canJump(int[] nums) {if(nums.length==1)return true;//初试覆盖范围int coverRange=nums[0];//在覆盖范围内更新最大的覆盖范围for(int i=0;i<=coverRange;i++) //for循环中的最大覆盖范围是一个变量{coverRange=Math.max(coverRange,i+nums[i]);if(coverRange>=nums.length-1)return true;}return false;}
}
45、跳跃游戏 II
给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。
每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:
- 0 <= j <= nums[i]
- i + j < n
返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]。
示例 1:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4]
输出: 2
本题和55思路是相似的,还是要看最大覆盖范围。
即局部最优:当前覆盖范围内尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。
即看每步的最大覆盖范围,每个覆盖范围是一步。
class Solution {public int jump(int[] nums) {if(nums.length==1)return 0;//根据覆盖范围来计算 每个范围是一步int coverRange = nums[0]; //当前这一步的覆盖范围int count=1;int maxRange=nums[0]; //从当前范围再走一步能到的最大范围,即下一步的最大覆盖for(int i=0;i<=coverRange;i++){maxRange=Math.max(maxRange,i+nums[i]); //不断更新下一步的最大覆盖if(coverRange>=nums.length-1) //如果当前覆盖距离能到{return count;}if(maxRange>=nums.length-1) //下一个范围才能覆盖到{count++;return count;}if(i==coverRange) //在此范围内的最大距离到不了终点,即走到了这一步范围的终点{coverRange=maxRange; //coverRange更新后不会跳出循环count++;}}return count;}
}
相关文章:

算法题总结(十四)——贪心算法(上)
贪心算法 什么是贪心 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。 贪心的套路(什么时候用贪心) 刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试…...

hive on tez 指定队列后任务一直处于running状态
如上图所示一直处于running状态,查看日志发现一直重复弹出同一个info: 2024-10-18 16:57:32,739 [INFO] [AMRM Callback Handler Thread] |rm.YarnTaskSchedulerService|: Allocated: <memory:0, vCores:0> 释义: 当前应用程序没有分配到任何内存…...

闲说视频清晰度和各种格式、编码技术的发展历史
文章目录 引子清晰度视频格式:MP4、AVI 、MKV、MOV、WMV、FLV 、RMVB等等什么是视频格式MP4AVIMKVMOVWMVFLVRM / RMVB其他 编码技术:MPEG-1、MPEG-2、MPEG-4、RealVideo、DivX、XviD、H.264(AVC)、H.265(HEVCÿ…...

嵌入式职业规划
嵌入式职业规划 在嵌入式的软件开发中,可以分为: 嵌入式MCU软件开发工程师; 嵌入式Linux底层(BSP)软件开发工程师; 嵌入式Linux应用开发工程师; 嵌入式FPGA算法开发工程师 对于前两个阶段 …...

Nginx - 实现 TCP/DUP流量的按 IP 动态转发
文章目录 需求背景需求目标:使用场景:成功标准:技术要求: Ng配置测试验证 需求 Nginx Stream TCP 协议按 IP 转发 背景 为了优化网络性能和提升服务的可用性,我们需要在 Nginx 中配置 stream 模块,使其根…...

基于深度学习的进化神经网络设计
基于深度学习的进化神经网络设计(Evolutionary Neural Networks, ENNs)结合了进化算法(EA)和神经网络(NN)的优点,用于自动化神经网络架构的设计和优化。通过模拟自然进化的选择、变异、交叉等过…...

软考-软件设计师(10)-专业英语词汇汇总与新技术知识点
场景 以下为高频考点、知识点汇总。 软件设计师上午选择题知识点、高频考点、口诀记忆技巧、经典题型汇总: 软考-软件设计师(1)-计算机基础知识点:进制转换、数据编码、内存编址、串并联可靠性、海明校验码、吞吐率、多媒体等: 软考-软件设计师(1)-计算机基础知识点:进制…...

PyTorch 2.5 发布带来一些新特性和改进
官网:https://github.com/pytorch/pytorchGitHub:https://github.com/pytorch/pytorch原文:https://github.com/pytorch/pytorch/releases/tag/v2.5.0 主要亮点 (Highlights)] SDPA CuDNN 后端:为 torch.nn.functional.scaled_d…...

算法:560.和为k的子数组
题目 链接:leetcode链接 思路分析(前缀和) 注意:我们前面讲过滑动窗口可以处理子数组、子串等问题, 但是在这道题目里面注意数据范围 -1000 < nums[i] < 1000 nums[i]可正可负,区间的和没有单调性,使…...

C++之list(2)
list(2) list的迭代器 const迭代器 根据我们之前学过的知识: const int*p1;//修饰的是指向的内容 int *const p2;//修饰的是迭代器本身我们写const迭代器,期望的是指向的内容不能修改。 所以更期望写上面p1的形式 const迭代器与普通迭代器的不同点在于…...

React Componet类组件详解(老项目)
React类组件是通过创建class继承React.Component来创建的,是React中用于构建用户界面的重要部分。以下是对React类组件的详细解释: 一、定义与基本结构 类组件使用ES6的class语法定义,并继承自React.Component。它们具有更复杂的功能&#…...

位运算题目-Java实现-LeetCode题解:判断字符是否唯一-丢失的数字-两整数之和-只出现一次的数字 II-消失的两个数字
这里是Themberfue 上一篇文章讲完了常见位运算的技巧以及总结 那么本章则通过五道题来运用这些技巧 判定字符是否唯一 题目解析 本题要求判断给定字符串中的字符是否唯一,也就是每个字符是否只出现一次 算法讲解 本题用哈希表遍历每一个字符也可以解决 如果这题使…...

复合泊松过程
复合泊松过程的均值、方差与特征函数 复合泊松过程的定义 复合泊松过程 ( Y(t) ) 是一种常见的随机过程,通常定义为: Y ( t ) ∑ k 1 N ( t ) X k Y(t) \sum_{k1}^{N(t)} X_k Y(t)k1∑N(t)Xk 其中: ( N(t) ) 是一个强度为 ( \lambd…...

[week1] newstar ctf ezAndroidStudy
本题主要考查对 APK 基本结构的掌握 查看 AndroidManifest.xml 可以发现 activity 只有 Homo 和 MainActivity 我们用 Jadx 打开 work.pangbai.ezandroidstudy.Homo 就可以获得 flag1 打开 resources.arsc/res/value/string.xml 搜索 flag2 即可 按描述到 /layout/activity_ma…...

TCP——Socket
应用进程只借助Socket API发和收但是不关心他是怎么进行传和收的 数据结构 图示Socket连接 捆绑属于隐式捆绑...

OpenStack服务Swift重启失效(已解决)
案例分析Swift重启失效 1. 报错详情 在重新启动 VMware 虚拟机后,我们发现 OpenStack 的 Swift 服务出现了 503 Service Unavailable 错误。经过排查,问题根源在于 Swift 服务所使用的存储挂载是临时挂载,而非永久挂载。 Swift 服务依赖于…...

System.Text.Json类库进行json转化时ValueKind:Object问题
当你的使用的Json库是System.Text.Json,而不是Newtonsoft.Json库的时候,你可能遇到以下问题及其解决办法。通常的解决办法是进行一些对应的配置。此外就需要根据情况使用自定义转换器实现你的需求。以下是通常遇到的使用自定义转换器解决的例子: Q1.当遇…...

免费Excel工作表同类数据合并工具
下载地址:https://pan.quark.cn/s/81b1aeb45e4c 在 Excel 表格里,当我们试图手动将多行同类数据合并为一行时,会遭遇诸多棘手的困难以及繁杂的操作流程。在确定哪些数据属于可合并的同类数据时,单纯依靠人工进行对比,极…...

如何在算家云搭建Video-Infinity(视频生成)
一、模型介绍 Video-Infinity是一个先进的视频生成模型,使用多个 GPU 快速生成长视频,无需额外训练。它能够基于用户提供的文本或图片提示,创造出高质量、多样化的视频内容。 二、模型搭建流程 1.大模型 Video-Infinity 一键使用 基础环境…...

LeetCode搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: 2 …...

UE5学习笔记24-添加武器弹药
一、给角色的武器添加弹药 1.创建界面,根据笔记23的界面中添加 2.绑定界面控件 UPROPERTY(meta (Bindwidget))UTextBlock* WeaponAmmoAmount;UPROPERTY(meta (Bindwidget))UTextBlock* CarriedAmmoAmount; 3.添加武器类型枚举 3.1创建武器类型枚举头文件 3.2创建文…...

限制游客在wordpress某分类下阅读文章的数量
在WordPress中实现某个分类下的内容限制游客只能阅读前5篇文章,注册用户可以阅读更多文章的功能,可以通过以下步骤来完成: 1. 安装和激活插件 首先,你可以使用一个插件来简化这个过程。一个常用的插件是 “MemberPress” 或 “R…...

Oracle云主机申请和使用教程:从注册到SSH连接的全过程
今天我要和大家分享如何成功申请Oracle云主机,并进行基本的配置和使用。我知道很多同行的朋友在申请Oracle云主机时都遇到了困难(疑惑abc错误),可能试了很多次都没有成功。现总结一下这些年来的一些注册流程经验,或许你们也能成功申请到自己的…...

芯知识 | NVH-FLASH语音芯片支持平台做语音—打造音频IC技术革新
随着科技的飞速发展,人们对于电子产品的音频性能要求越来越高。在这种背景下,NVH-FLASH系列语音芯片应运而生,作为音频IC领域的一次重大技术革新,NVH-FLASH系列语音芯片凭借其卓越的性能与灵活的支持平台,正逐步引领着…...

机器学习——解释性AI与可解释性机器学习
解释性AI与可解释性机器学习: 理解机器学习模型背后的逻辑 随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解…...

中国全国省市区县汇总全国省市区json省市区数据2024最新
简介 包含全国省市区县数据,共3465个。 全国总共有23个省、5个自治区、4个直辖市、2个特别行政区。 ——更新于2024年10月16日,从2017年开始,已经更新坚持7年 从刚开始1000个左右的城市json,到现在全国省市区县3465个。 本人感觉应该是目前最完善的~ 每年都在更新中,…...

[Linux#67][IP] 报头详解 | 网络划分 | CIDR无类别 | DHCP动态分配 | NAT转发 | 路由器
目录 一. IP协议头格式 学习任何协议前的两个关键问题 IP 报头与有效载荷分离 分离方法 为什么需要16位总长度 如何交付 二. 网络通信 1.IP地址的划分理念 2. 子网管理 3.网络划分 CIDR(无类别域间路由) 目的IP & 当前路由器的子网掩码 …...

路由器原理和静态路由配置
一、路由器的工作原理 根据路由表转发数据 接收数据包→查看目的地址→与路由表进行匹配找到转发端口→转发到该端口 二、路由表的形成 它是路由器中维护的路由条目的集合,路由器根据路由表做路径选择,里面记录了网段ip地址和对应下一跳接口的接口号。…...

UE5 使用Animation Budget Allocator优化角色动画性能
Animation Budget Allocator是UE内置插件,通过锁定动画系统所占CPU的预算,在到达预算计算量时对动画进行限制与优化。 开启Animation Budget Allocator需要让蒙皮Mesh使用特定的组件,并进行一些编辑器设置即可开启。 1.开启Animation Budget…...

Element UI 组件库详解:从入门到精通
在追求统一且流畅的用户体验时,开发者们常常选择使用 UI 组件库来加快开发速度。Element UI,这个基于 Vue.js 的组件库,提供了大量界面组件,极大地提升了前端开发的效率。本文将指导您如何开始使用 Element UI 组件库,…...